55 research outputs found

    Quantitative interpretation of the rotation curves of spiral galaxies at redshifts z~0.7 and z~1

    Full text link
    We present decompositions of the rotation curves of three spiral galaxies at redshifts z~0.7 and 1 into contributions by their bulges, disks, and dark halos, respectively. In order to set constraints on the degeneracy of the decompositions we interpret the morphology of the spiral structures quantitatively in the framework of density wave theory. Galaxy models constrained in such a way show that the distant galaxies, which are much younger than nearby galaxies, have very likely 'maximum disks', i.e. are dominated in their inner parts by baryonic matter. We argue that current theories of the cosmogony of galaxies must allow for these types of galaxies.Comment: 6 pages, accepted for publication in A&

    Modelling the spectral energy distribution of galaxies. IV Correcting apparent disk scalelengths and central surface brightnesses for the effect of dust at optical and near-infrared wavelengths

    Get PDF
    We present corrections for the change in the apparent scalelengths, central surface brightnesses and axis ratios due to the presence of dust in pure disk galaxies, as a function of inclination, central face-on opacity in the B-band (tau^f_B) and wavelength. The correction factors were derived from simulated images of disk galaxies created using geometries for stars and dust which can reproduce the entire spectral energy distribution from the ultraviolet (UV) to the Far-infrared (FIR)/submillimeter (submm) and can also account for the observed surface-brightness distributions in both the optical/Near-infrared and FIR/submm. We found that dust can significantly affect both the scalelength and central surface brightness, inducing variations in the apparent to intrinsic quantities of up to 50 percent in scalelength and up to 1.5 magnitudes in central surface brightness. We also identified some astrophysical effects for which, although the absolute effect of dust is non-negligible, the predicted variation over a likely range in opacity is relatively small, such that an exact knowledge of opacity is not needed. Thus, for a galaxy at a typical inclination of 37 degrees and having any tau^f_B>2, the effect of dust is to increase the scalelength in B relative to that in I by a factor of 1.12 +- 0.02 and to change the B-I central colour by 0.36 +- 0.05 magnitudes. Finally we use the model to analyse the observed scalelength ratios between B and I for a sample of disk-dominated spiral galaxies, finding that the tendency for apparent scalelength to increase with decreasing wavelength is primarily due to the effects of dust.Comment: 16 pages, 13 figures and 5 tables; accepted for publication in Astronomy & Astrophysic

    Internal kinematics of spiral galaxies in distant clusters. Part II. Observations and data analysis

    Full text link
    We have conducted an observing campaign with FORS at the ESO-VLT to explore the kinematical properties of spiral galaxies in distant galaxy clusters. Our main goal is to analyse transformation- and interaction processes of disk galaxies within the special environment of clusters as compared to the hierarchical evolution of galaxies in the field. Spatially resolved MOS-spectra have been obtained for seven galaxy clusters at 0.3<z<0.6 to measure rotation velocities of cluster members. For three of the clusters, Cl0303+17, Cl0413-65, and MS1008-12, for which we presented results including a TF-diagram in Ziegler et al. 2003, we describe here in detail the observations and data analysis. Each of them was observed with two setups of the standard FORS MOS-unit.With typical exposure times of >2 hours we reach an S/N>5 in the emission lines appropriate for the deduction of the galaxies' internal rotation velocities from [OII], Hbeta, or [OIII] profiles. Preselection of targets was done on the basis of available redshifts as well as from photometric and morphological information gathered from own observations, archive data, and from the literature. Emphasis was laid on the definition of suitable setups to avoid the typical restrictions of the standard MOS unit for this kind of observations. In total we assembled spectra of 116 objects of which 50 turned out to be cluster members. Position velocity diagrams, finding charts as well as tables with photometric, spectral, and structural parameters of individual galaxies are presented.Comment: 18 pages, 6 figures, accepted for publication in Astronomy and Astrophysics. A version with full resolution figures can be downloaded from http://www.uni-sw.gwdg.de/~vwgroup/publications.htm

    The FORS Deep Field: Field selection, photometric observations and photometric catalog

    Get PDF
    The FORS Deep Field project is a multi-colour, multi-object spectroscopic investigation of an approx. 7 times 7 region near the south galactic pole based mostly on observations carried out with the FORS instruments attached to the VLT telescopes. It includes the QSO Q 0103-260 (z = 3.36). The goal of this study is to improve our understanding of the formation and evolution of galaxies in the young Universe. In this paper the field selection, the photometric observations, and the data reduction are described. The source detection and photometry of objects in the FORS Deep Field is discussed in detail. A combined B and I selected UBgRIJKs photometric catalog of 8753 objects in the FDF is presented and its properties are briefly discussed. The formal 50% completeness limits for point sources, derived from the co-added images, are 25.64, 27.69, 26.86, 26.68, 26.37, 23.60 and 21.57 in U, B, g, R, I, J and Ks (Vega-system), respectively. A comparison of the number counts in the FORS Deep Field to those derived in other deep field surveys shows very good agreement.Comment: 15 pages, 11 figures (included), accepted for publication in A&

    High-resolution X-ray spectroscopy of the low and high states of the Seyfert 1 galaxy NGC 4051 with Chandra LETGS

    Full text link
    Methods. We analyse two observations taken with the Low Energy Transmission Grating Spectrometer of Chandra. We investigated the spectral response to a sudden flux decrease by a factor of 5, which occurred during the second observation. Results. We detect a highly ionised absorption component with an outflow velocity of -4670 km/s, one of the highest outflow velocity components observed in a Seyfert 1 galaxy. The spectra contain a relativistic O VIII Ly alpha line, and four absorption components spanning a range in ionisation parameter xi between 0.07 and 3.19. An emission component producing radiative recombination continua of C VI and C V appears during the low state. The black body temperature decreases with the drop in flux observed in the second observation. Conclusions. For all absorber components we exclude that the ionisation parameter linearly responded to the decrease in flux by a factor of 5. The variability of the absorber suggest that at least three out of four detected components are located in the range 0.02-1 pc. ABRIDGEDComment: Accepted by A&A, 14 pages, 9 figure

    An evolutionary disc model of the edge-on galaxy NGC 5907

    Get PDF
    We present a physical model that explains the two disparate observational facts: 1) the exponential vertical disc structure in the optical and NIR of the non-obscured part of the stellar disc and 2) the enhanced FIR/submm luminosity by about a factor of four near the obscured mid-plane, which requires additional dust and also stellar light to heat the dust component. We use multi-band photometry in U, B, V, R, and I- band combined with radiative transfer through a dust component to fit simultaneously the vertical surface-brightness and colour index profiles in all bands adopting a reasonable star formation history and dynamical heating function. The final disc model reproduces the surface-brightness profiles in all bands with a moderately declining star formation rate and a slowly starting heating function for young stars. The total dust mass is 57 million solar masses as required from the FIR/submm measurements. Without a recent star burst we find in the midplane an excess of 5.2-, 4.0-, and 3.0-times more stellar light in the U-, B-, and V-band, respectively. The corresponding stellar mass-to-light ratios are 0.91 in V- and 1.0 in R-band. The central face-on optical depth in V-band is 0.81 and the radial scale length of the dust is 40% larger than that of the stellar disc. Evolutionary disc models are a powerful method to understand the vertical structure of edge-on galaxies. Insights to the star formation history and the dynamical evolution of stellar discs can be gained. FIR/submm observations are necessary to restrict the parameter space for the models.Comment: 17 pages, 12 figures (24 files), A&A in pres

    Photometric structure of the peculiar galaxy ESO 235-G58

    Full text link
    We present the near-infrared and optical properties of the peculiar galaxy ESO 235-G58, which resembles a late-type ringed barred spiral seen close to face-on. However, the apparent bar of ESO 235-G58 is in reality an edge-on disk galaxy of relatively low luminosity. We have analyzed the light and color distributions of ESO 235-G58 in the NIR and optical bands and compared them with the typical properties observed for other morphological galaxy types, including polar ring galaxies. Similar properties are observed for ESO 235-G58, polar ring galaxies, and spiral galaxies, which leads us to conclude that this peculiar system is a polar-ring-related galaxy, characterized by a low inclined ring/disk structure, as pointed out by Buta & Crocker in an earlier study, rather than a barred galaxy.Comment: 16 pages, 15 figures, accepted for publication in Astronomy & Astrophysic

    Rotation and outflow in the central kiloparsec of the water megamaser galaxies IC 2560, NGC 1386, NGC 1052, and Mrk 1210

    Full text link
    Optical emission-line profiles were evaluated in order to explore the structure of galactic nuclei containing H2O megamaser sources. Galactic rotation and outflow of narrow-line gas are common features of this sample of water megamaser galaxies. All decomposed line-systems exhibit AGN typical line ratios. Recent detections of H2O megamasers in starburst galaxies and the apparent asssociation of one megamaser with a Seyfert 1 AGN suggest that megamasers can possibly be triggered by optically detectable outflows. The frequently encountered edge-on geometry favoring large molecular column densities appears to be verified for NGC 1386 and IC 2560. For NGC 1052 and Mrk 1210, maser emission triggered by the optically detected outflow components cannot be ruled out.Comment: 23 pages, 26 Postscript figures, A&A Main Journa

    Galaxy Zoo: Dust in Spirals

    Get PDF
    We investigate the effect of dust on spiral galaxies by measuring the inclination-dependence of optical colours for 24,276 well-resolved SDSS galaxies visually classified in Galaxy Zoo. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 magnitudes for the ugri passbands. We split the sample into "bulgy" (early-type) and "disky" (late-type) spirals using the SDSS fracdeV (or f_DeV) parameter and show that the average face-on colour of "bulgy" spirals is redder than the average edge-on colour of "disky" spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disk ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with "disky" spirals at M_r ~ -21.5 mags having the most reddening. This decrease of reddening for the most luminous spirals has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering.Comment: MNRAS in press. 25 pages, 22 figures (including an abstract comparing GZ classifications with common automated methods for selecting disk/early type galaxies in SDSS data). v2 corrects typos found in proof

    Growth of galactic bulges by mergers. II. Low-density satellites

    Get PDF
    Satellite accretion events have been invoked for mimicking the internal secular evolutionary processes of bulge growth. However, N-body simulations of satellite accretions have paid little attention to the evolution of bulge photometric parameters, to the processes driving this evolution, and to the consistency of this evolution with observations. We want to investigate whether satellite accretions indeed drive the growth of bulges, and whether they are consistent with global scaling relations of bulges and discs. We perform N-body models of the accretion of satellites onto disc galaxies. A Tully-Fisher (M \propto V_{rot}^ {alpha_TF}) scaling between primary and satellite ensures that density ratios, critical to the outcome of the accretion, are realistic. We carry out a full structural, kinematic and dynamical analysis of the evolution of the bulge mass, bulge central concentration, and bulge-to-disc scaling relations. The remnants of the accretion have bulge-disc structure. Both the bulge-to-disc ratio (B/D) and the Sersic index (n) of the remnant bulge increase as a result of the accretion, with moderate final bulge Sersic indices: n = 1.0 to 1.9. Bulge growth occurs no matter the fate of the secondary, which fully disrupts for alpha_TF=3 and partially survives to the remnant center for alpha_TF = 3.5 or 4. Global structural parameters evolve following trends similar to observations. We show that the dominant mechanism for bulge growth is the inward flow of material from the disc to the bulge region during the satellite decay. The models confirm that the growth of the bulge out of disc material, a central ingredient of secular evolution models, may be triggered externally through satellite accretion.Comment: Accepted for publication in A&A, 20 pages, 11 figures. Figs. 1 and 2 are low resolution ones: high-resolution versions available under request to the author
    corecore