517 research outputs found

    Survival, Reproduction and Calcification of Three Benthic Foraminiferal Species in Response to Experimentally Induced Hypoxia

    Get PDF
    An experiment was conducted to test the survival rates, growth (calcification), and reproduction capacities of three benthic foraminiferal species (Ammonia tepida, Melonis barleeanus and Bulimina marginata) under strongly oxygen-depleted conditions alternating with short periods of anoxia. Protocols were determined to use accurate methods (1) to follow oxygen concentrations in the aquaria (continuously recorded using microsensors), (2) to distinguish live foraminifera (fluorogenic probe), (3) to determine foraminiferal growth (calcein-marked shells and automatic measurement of the shell size). Our results show a very high survival rate, and growth of A. tepida and M. barleeanus in all experimental conditions, suggesting that survival and growth are not negatively impacted by hypoxia. Unfortunately, no reproduction was observed for these species, so that we cannot draw firm conclusions on their ability to reproduce under hypoxic/anoxic conditions. The survival rates of Bulimina marginata are much lower than for the other two species. In the oxic treatments, the presence of juveniles is indicative of reproductive events, which can explain an important part of the mortality. The absence of juveniles in the hypoxic/anoxic treatments could indicate that these conditions inhibit reproduction. Alternatively, the perceived absence of juveniles could also be due to the fact that the juveniles resulting from reproduction (causing similar mortality rates as in the oxic treatments) were not able to calcify, and remained at a propagule stage. Additional experiments are needed to distinguish these two options

    On the preconditions for large-scale collective action

    Get PDF
    The phenomenon of collective action and the origin of collective action problems have been extensively and systematically studied in the social sciences. Yet, while we have substantial knowledge about the factors promoting collective action at the local level, we know far less about how these insights travel to large-scale collective action problems. Such problems, however, are at the heart of humanity’s most pressing challenges, including climate change, large-scale natural resource depletion, biodiversity loss, nuclear proliferation, antibiotic resistance due to overconsumption of antibiotics, and pollution. In this paper, we suggest an analytical framework that captures the theoretical understanding of preconditions for large-scale collective action. This analytical framework aims at supporting future empirical analyses of how to cope with and overcome larger-scale collective action problems. More specifically, we (i) define and describe the main characteristics of a large-scale collective action problem and (ii) explain why voluntary and, in particular, spontaneous large-scale collective action among individual actors becomes more improbable as the collective action problem becomes larger, thus demanding interventions by an external authority (a third party) for such action to be generated. Based on this, we (iii) outline an analytical framework that illustrates the connection between third-party interventions and large-scale collective action. We conclude by suggesting avenues for future research.</p

    Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning

    Get PDF
    Heatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm3 indiv−1 day−1 (usual temperature) to 0 mm3 indiv−1 day−1 when individuals were exposed to high temperature regimes (i.e.above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles

    Large-scale collective action to avoid an Amazon tipping point - key actors and interventions

    Get PDF
    The destruction of the Amazon is a major global environmental issue, not only because of greenhouse gas emissions or direct impacts on biodiversity and livelihoods, but also due to the forest\u27s role as a tipping element in the Earth System. With nearly a fifth of the Amazon already lost, there are already signs of an imminent forest dieback process that risks transforming much of the rainforest into a drier ecosystem, with climatic implications across the globe. There is a large body of literature on the underlying drivers of Amazon deforestation. However, insufficient attention has been paid to the behavioral and institutional microfoundations of change. Fundamental issues concerning cooperation, as well as the mechanisms facilitating or hampering such actions, can play a much more central role in attempts to unravel and address Amazon deforestation. We thus present the issue of preventing the Amazon biome from crossing a biophysical tipping point as a large-scale collective action problem. Drawing from collective action theory, we apply a novel analytical framework on Amazon conservation, identifying six variables that synthesize relevant collective action stressors and facilitators: information, accountability, harmony of interests, horizontal trust, knowledge about consequences, and sense of responsibility. Drawing upon literature and data, we assess Amazon deforestation and conservation through our heuristic lens, showing that while growing transparency has made information availability a collective action facilitator, lack of accountability, distrust among actors, and little sense of responsibility for halting deforestation remain key stressors. We finalize by discussing interventions that can help break the gridlock

    Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells

    Get PDF
    Current systems for conditional gene deletion within mouse macrophage lineages are limited by ectopic activity or low efficiency. In this study, we generated a Mafb-driven Cre strain to determine whether any dendritic cells (DCs) identified by Zbtb46-GFP expression originate from a Mafb-expressing population. Lineage tracing distinguished macrophages from classical DCs, neutrophils, and B cells in all organs examined. At steady state, Langerhans cells (LCs) were lineage traced but also expressed Zbtb46-GFP, a phenotype not observed in any other population. After exposure to house dust mite antigen, Zbtb46-negative CD64(+) inflammatory cells infiltrating the lung were substantially lineage traced, but Zbtb46-positive CD64(−) cells were not. These results provide new evidence for the unique identity of LCs and challenge the notion that some inflammatory cells are a population of monocyte-derived DCs

    Dynamic Interferometry Lithography on a TiO 2

    Get PDF
    International audienceSolar electricity is one of the most promising renewable energy resources. However, the ratio module's cost/energy produced remains a major issue for classical photovoltaic energy. Many technologies have been developed to solve this problem, by using micro-or nanostructuring on the solar cell or on the module. These kinds of structuring are often used as antireflection and light-trapping tools. In the meantime, other solar technologies are considered, such as concentration photovoltaic modules. This article presents a module combining both approaches, that is, nanostructures and concentration, in order to increase the module's profitability. Sol-gel derived TiO 2 diffraction gratings, made by dynamic interferometric lithography, are added on the top of the glass cover to deflect unused light onto the solar cell, increasing the module efficiency

    Foraminiferal species responses to in situ, experimentally induced anoxia in the Adriatic Sea

    Get PDF
    Anoxia was successfully induced in four benthic chambers installed at 24 m depth in the northern Adriatic Sea for periods varying from 9 days to 10 months. During the 10-month period, species richness significantly decreased. Although no significant change in Shannon diversity and evenness was observed, the composition of the foraminiferal assemblages changed with time. This change is due to interspecific differences in tolerance to anoxia. Reophax nanus, Textularia agglutinans and Quinqueloculina stelligera all showed a significant decrease with time, strongly suggesting they are sensitive to anoxia. Conversely, Eggerella scabra, Bulimina marginata, Lagenammina atlantica, Hopkinsina pacifica and Bolivina pseudoplicata appeared to be resistant to the experimental conditions. Quinqueloculina seminula was apparently sensitive to anoxia but showed a clear standing stock increase during the first month of the experiment, which we interpret as an opportunistic response to increasing organic matter availability due to the degradation of the dead macrofaunal organisms. None of the anoxia-sensitive species is able to accumulate intracellular nitrates. Nitrate accumulation could be shown for some tested specimens of the dominant anoxia-tolerant species E. scabra and B. marginata. However, tests on the denitrification capacity of these taxa yielded negative results, suggesting that their resistance to long-term anoxia is not due to their ability to denitrify

    ERK Is Involved in the Reorganization of Somatosensory Cortical Maps in Adult Rats Submitted to Hindlimb Unloading

    Get PDF
    Sensorimotor restriction by a 14-day period of hindlimb unloading (HU) in the adult rat induces a reorganization of topographic maps and receptive fields. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of intracellular MAPK signaling pathway since Extracellular-signal-Regulated Kinase 1/2 (ERK1/2) is known to play a significant role in the control of synaptic plasticity. In order to better understand the mechanisms underlying cortical plasticity in adult rats submitted to a sensorimotor restriction, we analyzed the time-course of ERK1/2 activation by immunoblot and of cortical reorganization by electrophysiological recordings, on rats submitted to hindlimb unloading over four weeks. Immunohistochemistry analysis provided evidence that ERK1/2 phosphorylation was increased in layer III neurons of the somatosensory cortex. This increase was transient, and parallel to the changes in hindpaw cortical map area (layer IV). By contrast, receptive fields were progressively enlarged from 7 to 28 days of hindlimb unloading. To determine whether ERK1/2 was involved in cortical remapping, we administered a specific ERK1/2 inhibitor (PD-98059) through osmotic mini-pump in rats hindlimb unloaded for 14 days. Results demonstrate that focal inhibition of ERK1/2 pathway prevents cortical reorganization, but had no effect on receptive fields. These results suggest that ERK1/2 plays a role in the induction of cortical plasticity during hindlimb unloading
    • …
    corecore