418 research outputs found

    Trifolium mutabile as new species of annual legume for mediterranean climate zone: First evidences on forage biomass, nitrogen fixation and nutritional characteristics of different accessions

    Get PDF
    The present study evaluated the forage production, nitrogen fixation and the qualitative characteristics of different accessions of Trifolium mutabile, a new species of annual clover, collected in southern Italy. Forage traits were assessed by harvesting plants at the vegetative stage (stem elongation) and the subsequent regrowth at the flowering stage (inflorescence emergence-main shoot). From results, significant differences were found among the accessions of T. mutabile in terms of forage biomass production (from 5.1 to 8.2 t ha−1 dry matter), capacity of nitrogen fixation (58.2–76.8% Ndfa) and forage nutritional characteristics. Besides the high forage yield, the investigated accessions showed favourable values of production and quality, representing also worthy germplasm for selection programs as well as the application for possible plant cultivar registration. Moreover, it is interesting to underline that T. mutabile may represent a valuable alternative to commonly cultivated annual clover species due to its prolonged vegetative cycle. However, further investigations are needed to assess the self-reseeding capacity of T. mutabile when utilized as pasture species

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Effects of weed control practices on plant diversity in a homogenous olive-dominated landscape (South-east of Italy)

    Get PDF
    Olive groves represent an important economic, agro-ecological, and cultural resource in the Mediterranean Basin. Weed management plays a fundamental role in their sustainable management. The aim of this work was to characterize and assess the plant diversity associated with different weed control practices, in a homogeneous olive-dominated landscape in the South-East of Italy. Sixty-five vegetation plots were sampled in orchards treated with different weed control practices: mowing, tillage, and use of chemical herbicides. The multi-response permutation procedure was used to test the hypothesis of no difference among the treatments. The relationships between plots were visualized by means of non-metric multidimensional scaling ordination. A generalized linear mixed model was used to analyze the relationships between weed control practices and life forms, chorotypes, and diversity indexes. The results showed that the three weed control practices determined slightly different plant communities. Chemically weeded orchards showed an impoverished floristic composition and the lowest diversity, whereas mowing and tillage yielded similar values. These latter two treatments differed for the percentages of hemicryptophytes and therophytes. Moreover, different from other studies, we did not find plant species of particular concern for biodiversity conservation. We hypothesize that this result is due to the monotonous structure of the agro-landscape we investigated, where natural elements are almost lacking. From this point of view, a correct management of agro-districts should consider both the agronomic practices at the level of the individual olive groves and the structure of the agro-landscape

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section
    corecore