114 research outputs found

    Simple Questionnaires to Improve Pooling Strategies for SARS-CoV-2 Laboratory Testing

    Get PDF
    Background: Liberal PCR testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is key to contain the coronavirus disease 2019 (COVID-19) pandemic. Combined multi-sample testing in pools instead of single tests might enhance laboratory capacity and reduce costs, especially in low- and middle-income countries. Objective: The purpose of our study was to assess the value of a simple questionnaire to guide and further improve pooling strategies for SARS-CoV-2 laboratory testing. Methods: Pharyngeal swabs for SARS-CoV-2 testing were obtained from healthcare and police staff, hospital inpatients, and nursing home residents in the southwestern part of Germany. We designed a simple questionnaire, which included questions pertaining to a suggestive clinical symptomatology, recent travel history, and contact with confirmed cases to stratify an individual’s pre-test probability of having contracted COVID-19. The questionnaire was adapted repeatedly in face of the unfolding pandemic in response to the evolving epidemiology and observed clinical symptomatology. Based on the response patterns, samples were either tested individually or in multi-sample pools. We compared the pool positivity rate and the number of total PCR tests required to obtain individual results between this questionnaire-based pooling strategy and randomly assembled pools. Findings: Between March 11 and July 5, 2020, we processed 25,978 samples using random pooling (n = 6,012; 23.1%) or questionnaire-based pooling (n = 19,966; 76.9%). The overall prevalence of SARS-CoV-2 was 0.9% (n = 238). Pool positivity (14.6% vs. 1.2%) and individual SARS-CoV-2 prevalence (3.4% vs. 0.1%) were higher in the random pooling group than in the questionnaire group. The average number of PCR tests needed to obtain the individual result for one participant was 0.27 tests in the random pooling group, as compared to 0.09 in the questionnaire-based pooling group, leading to a laboratory capacity increase of 73% and 91%, respectively, as compared to single PCR testing. Conclusions: Strategies that combine pool testing with a questionnaire-based risk stratification can increase laboratory testing capacities for COVID-19 and might be important tools, particularly in resource-constrained settings

    Destination development in Western Siberia:Tourism governance and evolutionary economic geography

    Get PDF
    Tourism development has often been identified as a tool for balancing negative effects of economic restructuring, especially in peripheral regions. Tourism-based activities often utilize the availability of abundant nature, but although most English language studies of destination development are presented from western contexts, examples from post-Soviet Russia are rare. Western Siberia is a periphery with access to natural resources and heavy industrialization but remotely located from domestic (Russian) and international markets, where tourism is often considered a saviour, especially for the regional economies. Stakeholders in this Russian resource periphery face challenges in managing governance and cooperation in destinations development due to frequent institutional, economic and social changes. Using evolutionary economic geography and based on primary sources and interview data, tourism development and stakeholder relations are assessed in three Western Siberia regions: Tomsk, Kemerovo and Altai Krai. Findings show that for tourism to make a significant contribution, it must be more central to the economic development agenda in all three regions. However, it is currently only achieving a permanent high-profile in one of them, being crowded out by other (mostly primary) industries in the other two. Although the specific tourism governance set-up varies between the three regions, it is clear that public tourism governance still sits somewhat uneasily between state control and the market economy. Tourism receives substantial public subsidies, especially in large-scale investment projects, which depend on federal support within a governance system where decentralization seems to be somewhat limited and unstable. As a result, the tourism path development in the Siberian periphery is highly dependent on state intervention and success in other sectors.</p

    Upper Crustal Structure from the Santa Monica Mountains to the Sierra Nevada, Southern California: Tomographic Results from the Los Angeles Regional Seismic Experiment, Phase II (LARSE II)

    Get PDF
    In 1999, the U.S. Geological Survey and the Southern California Earthquake Center (SCEC) collected refraction and low-fold reflection data along a 150-km-long corridor extending from the Santa Monica Mountains northward to the Sierra Nevada. This profile was part of the second phase of the Los Angeles Region Seismic Experiment (LARSE II). Chief imaging targets included sedimentary basins beneath the San Fernando and Santa Clarita Valleys and the deep structure of major faults along the transect, including causative faults for the 1971 M 6.7 San Fernando and 1994 M 6.7 Northridge earthquakes, the San Gabriel Fault, and the San Andreas Fault. Tomographic modeling of first arrivals using the methods of Hole (1992) and Lutter et al. (1999) produces velocity models that are similar to each other and are well resolved to depths of 5-7.5 km. These models, together with oil-test well data and independent forward modeling of LARSE II refraction data, suggest that regions of relatively low velocity and high velocity gradient in the San Fernando Valley and the northern Santa Clarita Valley (north of the San Gabriel Fault) correspond to Cenozoic sedimentary basin fill and reach maximum depths along the profile of ∼4.3 km and >3 km, respectively. The Antelope Valley, within the western Mojave Desert, is also underlain by low-velocity, high-gradient sedimentary fill to an interpreted maximum depth of ∼2.4 km. Below depths of ∼2 km, velocities of basement rocks in the Santa Monica Mountains and the central Transverse Ranges vary between 5.5 and 6.0 km/sec, but in the Mojave Desert, basement rocks vary in velocity between 5.25 and 6.25 km/sec. The San Andreas Fault separates differing velocity structures of the central Transverse Ranges and Mojave Desert. A weak low-velocity zone is centered approximately on the north-dipping aftershock zone of the 1971 San Fernando earthquake and possibly along the deep projection of the San Gabriel Fault. Modeling of gravity data, using densities inferred from the velocity model, indicates that different velocity-density relationships hold for both sedimentary and basement rocks as one crosses the San Andreas Fault. The LARSE II velocity model can now be used to improve the SCEC Community Velocity Model, which is used to calculate seismic amplitudes for large scenario earthquakes

    Timescales of lateral sediment transport in the Panama Basin as revealed by radiocarbon ages of alkenones, total organic carbon and foraminifera

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 290 (2010): 340-350, doi:10.1016/j.epsl.2009.12.030.Paired radiocarbon measurements on haptophyte biomarkers (alkenones) and on cooccurring tests of planktic foraminifera (Neogloboquadrina dutertrei and Globogerinoides sacculifer) from late glacial to Holocene sediments at core locations ME0005-24JC, Y69- 71P, and MC16 from the south-western and central Panama Basin indicate no significant addition of pre-aged alkenones by lateral advection. The strong temporal correspondence between alkenones, foraminifera and total organic carbon (TOC) also implies negligible contributions of aged terrigenous material. Considering controversial evidence for sediment redistribution in previous studies of these sites, our data imply that the laterally supplied material cannot stem from remobilization of substantially aged sediments. Transport, if any, requires syn-depositional nepheloid layer transport and redistribution of low-density or fine-grained components within decades of particle formation. Such rapid and local transport minimizes the potential for temporal decoupling of proxies residing in different grain size fractions and thus facilitates comparison of various proxies for paleoceanographic reconstructions in this study area. Anomalously old foraminiferal tests from a glacial depth interval of core Y69-71P may result from episodic spillover of fast bottom currents across the Carnegie Ridge transporting foraminiferal sands towards the north.This study was funded by the Helmholtz Young Investigators Group „Applications of molecular 14C analysis for the study of sedimentation processes and carbon cycling in marine sediments”. G.M. acknowledges financial support from WHOI postdoctoral scholarship program. T.I.E. was supported by NSF grant OCE-0526268. A.C.M. was supported by NSF grant ATM0602395

    Global temperature calibration of the alkenone unsaturation index (UK′37) in surface waters and comparison with surface sediments

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q02005, doi:10.1029/2005GC001054.In this paper, we compile the current surface seawater C37 alkenone unsaturation (UK′37) measurements (n=629, −1 to 30°C temperature range) to derive a global, field-based calibration of UK′37 with alkenone production temperature. A single nonlinear “global” surface water calibration of UK′37 accurately predicts alkenone production temperatures over the diversity of modern-day oceanic environments and alkenone-synthesizing populations (T=−0.957 + 54.293(UK′37) − 52.894(UK′37)2 + 28.321(UK′37)3, r2=0.97, n=567). The mean standard error of estimation is 1.2°C with insignificant bias in estimated production temperature among the different ocean regions sampled. An exception to these trends is regions characterized by strong lateral advection and extreme productivity and temperature gradients (e.g., the Brazil-Malvinas Confluence). In contrast to the surface water data, the calibration of UK′37 in surface sediments with overlying annual mean sea surface temperature (AnnO) is best fit by a linear model (AnnO=29.876(UK′37) − 1.334, r2=0.97, n=592). The standard error of estimation (1.1°C) is similar to that of the surface water production calibration, but a higher degree of bias is observed among the regional data sets. The sediment calibration differs significantly from the surface water calibration. UK′37 in surface sediments is consistently higher than that predicted from AnnO and the surface water production temperature calibration, and the magnitude of the offset increases as the surface water AnnO decreases. We apply the global production temperature calibration to the coretop UK′37 data to estimate the coretop alkenone integrated production temperature (coretop IPT) and compare this with the overlying annual mean sea surface temperature (AnnO). We use simple models to explore the possible causes of the deviation observed between the coretop temperature signal, as estimated by UK′37, and AnnO. Our results indicate that the deviation can best be explained if seasonality in production and/or thermocline production as well as differential degradation of 37:3 and 37:2 alkenones both affect the sedimentary alkenone signal.C.R. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG)

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This&nbsp;ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean&nbsp;culture, and with&nbsp;the following Magdalenian culture&nbsp;that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers,&nbsp;who were also characterized by marked differences in phenotypically relevant variants

    Phototrophic biofilms and their potential applications

    Get PDF
    Phototrophic biofilms occur on surfaces exposed to light in a range of terrestrial and aquatic environments. Oxygenic phototrophs like diatoms, green algae, and cyanobacteria are the major primary producers that generate energy and reduce carbon dioxide, providing the system with organic substrates and oxygen. Photosynthesis fuels processes and conversions in the total biofilm community, including the metabolism of heterotrophic organisms. A matrix of polymeric substances secreted by phototrophs and heterotrophs enhances the attachment of the biofilm community. This review discusses the actual and potential applications of phototrophic biofilms in wastewater treatment, bioremediation, fish-feed production, biohydrogen production, and soil improvement

    MACI - a new era?

    Get PDF
    Full thickness articular cartilage defects have limited regenerative potential and are a significant source of pain and loss of knee function. Numerous treatment options exist, each with their own advantages and drawbacks. The goal of this review is to provide an overview of the problem of cartilage injury, a brief description of current treatment options and outcomes, and a discussion of the current principles and technique of Matrix-induced Autologous Chondrocyte Implantation (MACI). While early results of MACI have been promising, there is currently insufficient comparative and long-term outcome data to demonstrate superiority of this technique over other methods for cartilage repair
    corecore