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Abstract 

Paired radiocarbon measurements on haptophyte biomarkers (alkenones) and on co-

occurring tests of planktic foraminifera (Neogloboquadrina dutertrei and Globogerinoides 

sacculifer) from late glacial to Holocene sediments at core locations ME0005-24JC, Y69-

71P, and MC16 from the south-western and central Panama Basin indicate no significant 

addition of pre-aged alkenones by lateral advection. The strong temporal correspondence 

between alkenones, foraminifera and total organic carbon (TOC) also implies negligible 

contributions of aged terrigenous material. Considering controversial evidence for 

sediment redistribution in previous studies of these sites, our data imply that the laterally 

supplied material cannot stem from remobilization of substantially aged sediments. 

Transport, if any, requires syn-depositional nepheloid layer transport and redistribution 

of low-density or fine-grained components within decades of particle formation. Such 

rapid and local transport minimizes the potential for temporal decoupling of proxies 

residing in different grain size fractions and thus facilitates comparison of various proxies 

for paleoceanographic reconstructions in this study area. Anomalously old foraminiferal 

tests from a glacial depth interval of core Y69-71P may result from episodic spillover of 

fast bottom currents across the Carnegie Ridge transporting foraminiferal sands towards 

the north. 
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1. Introduction 

The Equatorial Pacific plays a major role in the global carbon and nitrogen cycle 

via oceanic biological productivity and ocean-atmosphere gas exchange (Chavez and 

Barber, 1987; Pennington et al., 2006). Regionally high primary productivity is 

maintained by upwelling along the equatorial divergence (Kessler, 2006; Wyrtki, 1967), 

pumping organic carbon to the deep sea. However, the Equatorial Pacific is presently a 

net source of CO2 to the atmosphere since its major nutrients are not fully consumed 

perhaps due to iron limitation (Behrenfeld et al. 1996; Kolber et al. 1994). Understanding 

the climate history of this region is important for understanding the interaction of 

physical and biological processes related to climate change.  

The Panama Basin has been intensively studied for its climate and 

paleoproductivity history over glacial-interglacial timescales based on a wide range of 

proxies (Loubere, 1999; Loubere, 2000; Loubere et al., 2003; Loubere et al., 2004; 

Loubere and Richaud, 2007; Lyle et al., 2002; Lyle et al., 2005; Lyle et al., 2007; 

Martinez et al., 2006; Paytan et al., 1996; Pedersen, 1983; Pisias and Mix, 1997; 

Sarnthein et al., 1988). A conflict has emerged in terms of the past sedimentation 

dynamics of this region. Accumulation rates of sedimentary constituents related to 

marine productivity and vertical carbon export (e.g., organic carbon, calcium carbonate 

or barite) indicate higher glacial export rates compared to interglacials (Lyle et al., 2002; 

Paytan et al., 1996; Pedersen, 1983; Sarnthein et al., 1988), whereas proxies 

normalized to a “constant flux” proxy (i.e. 230Thoriumexcess) (Loubere, 1999; Loubere, 

2000; Loubere et al., 2003; Loubere et al., 2004) and faunal assemblages (Loubere, 

1999; Martinez et al., 2006) imply constant or reduced glacial productivity. The latter 

findings imply lateral particle transport and sediment focusing processes play an 

important role in this region. Such transport might also account for conflicts among 

paleoceanographic proxies carried in different grain-size fractions (Mix, 2006). 

Moore et al. (1973) demonstrated that the distribution of biogenic sediments 

(carbonate and opal) in the Panama Basin does not match the pattern which should be 

derived from the overlying primary productivity, and inferred winnowing and lateral 

transport of fine-grained material. Using textural analysis Van Andel (1973) estimated 

that winnowed fine-grained material from the surrounding volcanic ridges contributes at 

least 40-50% of total sediment accumulation in the Panama Basin. Honjo (1982) showed 

that the lithogenic fraction in sediment traps at 3560m depth was several times higher 

than the corresponding fraction from 890 and 2590m depth, implying that a major 

fraction of the lithogenic particles reaching the deep Panama Basin did not originate from 

overlying surface waters. A combined photo-optical and sediment trap approach reveals 

that marine snow abundances cannot account for the particle fluxes collected by traps, 

requiring resuspension from the sediment water interface and subsequent lateral 

transport (Asper et al., 1992). 



Radiocarbon measurements of seawater dissolved inorganic carbon (DIC), 

particulate inorganic and organic carbon (PIC and POC) from different water depths as 

well as sediment fluff inorganic and organic carbon (SIC and SOC) require a source of old 

carbon in the deep water, which is at least partly derived from resuspended sediment 

(Druffel et al. 1998). 

Using the 230Thorium normalization method, several authors suggested that the 

sediment accumulation maxima observed in glacial sediments from the Panama Basin 

might be an artifact resulting from lateral supply rather than paleoproductivity (Kienast 

et al., 2007; Loubere et al., 2004; Marcantonio et al., 2001). Kienast et al. (2007) report 

230Thoriumexcess (
230Thxs) derived focusing factors (Ψ) for cores from the Panama Basin as 

high as Ψ=7.5, implying substantial contribution of laterally supplied sediment. 

Nevertheless, the applicability of 230Th method in the Equatorial Pacific and particularly in 

the Panama Basin remains a subject of debate (Broecker, 2008; Francois et al., 2007; 

Kienast et al., 2007; Lyle et al., 2005; Lyle et al., 2007; Siddall et al., 2008). 

Comparison of radiocarbon ages of molecular fossils of marine phytoplankton such 

as the haptophyte-derived alkenones with those of co-occurring calcareous microfossils 

of planktic foraminifera can independently be used to identify aged allochthonous 

material supplied via lateral sediment transport processes (Mollenhauer et al., 2003; 

Ohkouchi et al., 2002). Organic matter is associated with the low-density fraction and is 

prone to resuspension. Critical shear velocities for resuspension of phytodetritus range 

from 0.4 to 0.9 cm/s (Beaulieu, 2002; Thomsen and Gust, 2000), considerably less than 

the critical shear velocities of >1.2 cm/s needed to resuspend foraminifera of ~200-400 

µm diameter (assuming the physical properties of sand) (Ziervogel and Bohling, 2003). 

Thus transport of particles by currents can lead to significant spatial and also temporal 

offsets between organic matter (alkenones and TOC) and co-occurring foraminifera. 

Ohkouchi et al. (2002) reported radiocarbon age offsets of up to 7000 14C years 

between alkenones and planktic foraminifera from identical sediment depth intervals 

from the Bermuda Rise. They concluded that alkenones were originally deposited at the 

Canadian Margin where they had been resuspended and transported to the Bermuda Rise. 

Similar processes were identified by Mollenhauer et al. (2003) for the Benguela upwelling 

area. Alkenones were found to be approximately 2500 14C years older than co-occurring 

planktic foraminifera, which was interpreted as the result of continuous cycles of 

resuspension and redeposition of particles originating from the inner shelf off Namibia. 

The lateral displacement of sediment constituents associated with different grain-

size classes, however, does not necessarily lead to a temporal offset in their radiocarbon 

contents. Mollenhauer et al. (2006) showed combined 14C and 230Thxs data for the 

Argentine Basin. In this region, independent evidence exists for lateral displacement of 

alkenone-bearing particles (Benthien and Müller, 2000; Rühlemann and Butzin, 2006). 

While 230Thxs derived focusing factors indicate lateral transport, radiocarbon ages of 



alkenones and foraminifera were similar, implying that lateral advection in the Argentine 

Basin occurs rapidly after sedimentation, and moves essentially modern material 

(Mollenhauer et al., 2006). 

 

Here we present radiocarbon data for planktic foraminiferal carbonate, total 

organic carbon (TOC) and alkenones for three cores in the Panama Basin. The good age 

agreement between most of these different sediment constituents suggest minimal 

supply of pre-aged organic material of either marine or terrigenous origin. Considering 

the multiple lines of evidence for occurrence of lateral sediment transport in the Panama 

Basin, we conclude that lateral transport of the easily-resuspendable, low-density 

sediment fraction occurs syn-depositionally. 



2. Study Area 

The Panama Basin is located in the Eastern Equatorial Pacific off the coast of 

Central America and northwestern Southern America (Figure 1). It is relatively isolated 

from the (Central) Equatorial Pacific by the volcanic Cocos and Carnegie Ridges on the 

north and south, respectively, and the Galapagos Platform in the west. Underlying the 

equatorial divergence upwelling region, high rates of primary productivity result in high 

biogenic particle export from the surface waters to the seafloor. The productivity in the 

euphotic zone above the Southern Panama Basin is estimated at ~600mg C/m²/day with 

a biomass of approximately 0.5 mg Chl/m³ The productivity in the Central Panama Basin 

is less pronounced at ~300-400mg C/m²/day and ~0.3mg Chl/m³ biomass (Behrenfeld 

and Falkowski 1997; Moore et al., 1973; Pennington et al., 2006; 

http://giovanni.gsfc.nasa.gov (2002-2008)). 

The Panama Basin area is influenced by bottom currents from the Peru Basin, 

entering through the Ecuador Trench with a sill depth of 2920m. Water masses disperse 

north- and westward off northern Ecuador and penetrate into the SW Panama Basin 

south of the Malpelo Ridge where they spread to the north and the south (Laird, 1971; 

Lonsdale, 1977). An additional inflow-passage into the Panama Basin exists across the 

central saddle of the Carnegie Ridge located between 85° and 86°W with a sill depth of 

2330m. Here, an outcrop of the acoustic basement indicates erosion (or non-deposition) 

of sediment which is up to 400m thick on the adjacent ridge flanks (Lonsdale, 1977; 

Malfait and Van Andel, 1980). Erosional valleys up to 400m deep continue from the 

saddle incision down the northern flank of the Carnegie Ridge. Temperature profiles 

within the Panama Basin imply that episodic spillover is more likely than a constant flow 

across the Carnegie Ridge. The cause and frequency of these spillover events is unknown 

and reliable hydrographic data is lacking (Lonsdale, 1977). 



3. Materials and Methods 

We used deep-sea sediment cores from three locations in the Panama Basin 

(Table 1). Core ME0005A-24JC was taken during R/V Melville cruise ME0005A in 2000, 

while the neighboring core Y69-71P was taken in 1969 on board R/V Yaquina during 

cruise YALOC69. Both cores were retrieved just north of the Carnegie Ridge in an area of 

abyssal hills, which is part of a narrow east-west trending trough (Figure 1). Y69-71P 

was collected mid-slope, while ME0005A-24JC was taken within an adjacent but separate 

abyssal valley about 10km south of Y69-71P. Samples of 110-136g wet weight were 

taken from core intervals spanning approximately 5 cm and represented late glacial to 

Holocene sediments (Table 2). For both cores 230Thxs data are available (Kienast et al. 

2007). 

Additionally multicorer core MC16 from the Central Panama Basin was chosen in 

order to reconstruct the age relationships of the different sediment constituents in an 

area with minor influence of lateral advection (Kienast et al. 2007). Core MC16 was taken 

during R/V Knorr campaign in 2005 (KNR 182-9), sampled in 1 cm slices on board ship 

and stored at -20°C until further analysis. Core slices of 3 sub-cores were re-combined in 

order to obtain sufficient material for all analyses.  

Samples were freeze-dried and homogenized prior to further treatment. Co-

occurring alkenones and planktic foraminifer tests were isolated from each sample and 

radiocarbon dated. For TOC radiocarbon analyses, subsamples of the freeze-dried 

samples of 100mg-500mg (equivalent to 1 mg organic carbon) were used. 

 

3.1 Alkenone Purification 

Alkenones were extracted from 30 to 40g of freeze-dried and homogenized 

sediments using Soxhlet extraction or Accelerated Solvent Extraction (ASE) and purified 

following the analytical procedures of Ohkouchi et al. (2005b). Total lipid extracts were 

saponified with 0.5M solution of KOH in MeOH for 3 h at 85°C. After cooling, up to 90% 

of the solvent was evaporated under a stream of nitrogen and neutral lipids were 

extracted into hexane five times. The neutral fraction was further separated into three 

polarity fractions by use of a silica gel column (1% de-activated SiO2, 0.063-0.2mm 

mesh size, column: 6mm i.d. x 4cm) eluting hydrocarbons using 4ml hexane, ketones 

and aldehydes using 4ml hexane:CH2Cl2 (1:2 v:v), and alcohols using 4ml MeOH. 

Urea adduction (Marlowe et al., 1984) was performed on fraction 2 to separate 

straight-chain ketones/aldehydes from branched constituents. For this purpose, the 

samples were dissolved in a hexane:CH2Cl2 (2:1 v:v, 4.5ml) solution and a saturated 

urea solution (40g/l in MeOH, 1.5ml) was added dropwise. Samples were refrigerated for 

15 min followed by removal of solvents under a stream of nitrogen. These steps were 

repeated twice. Afterwards urea crystals were rinsed with hexane five to seven times to 

recover non-adducted (branched and cyclic) components. Subsequently, urea crystals 



were dissolved in Seralpure water and extracted into hexane five to seven times. The 

straight-chain fraction was then applied to a column containing AgNO3-coated silica gel to 

separate saturated ketones (4ml CH2Cl2) from unsaturated ketones (4ml ethyl acetate or 

ether). To ensure maximum recovery, a third fraction using 4ml MeOH was eluted. 

Resulting di-, tri- and tetra-unsaturated ketones were finally cleaned using a silica gel 

column (1% de-activated SiO2, mesh size 0.063-0.2mm, column 6mm i.d. x 4mm) 

eluting with 4ml hexane:CH2Cl2 (1:2 v:v) to remove potential contamination introduced 

during the analytical procedures. 

Following each analytical step, purification of the samples was monitored by 

analysis of subsamples (representing 0.1% of total sample) using an HP5890 series 

chromatograph equipped with a flame ionization detector. 

 

3.2 Foraminifera 

Tests of planktic foraminifera were hand-picked from the >125µm fraction of 

sediments obtained by wet-sieving using tap water. A species with consistently high 

abundance, Neogloboquadrina dutertrei, was chosen in order to minimize differential 

abundance artifacts associated with bioturbation (Broecker et al., 1984). For the Eastern 

Equatorial Pacific the dominant foraminiferal species is N. dutertrei representing 60-70% 

of the Holocene and 45-65% of the last glacial foraminiferal assemblages (Martinez et al. 

2006). This species prefers water depths of 60-150m, but shows a pronounced 

abundance peak between 25 and 50m in the Panama Basin (Fairbanks et al., 1982), and 

has δ18O consistent with calcification from 50 to 100 m depth (Benway et al., 2006). In 

sample 15-20cm of core ME0005A-24JC and samples 11-18cm and 25-30cm of core Y69-

71P, a second co-occurring species (Globigerinoides sacculifer) was analysed. The 

maximum concentrations of living G. sacculifer in the Panama Basin have been shown in 

25-37m water depth (Fairbanks et al., 1982), while tracer analyses on shells from the 

sea floor suggest calcification depths of 30-40m (Benway et al., 2003). 

For core ME0005A-24JC foraminiferal 14C ages from 81cm, 230cm, 291cm and 

351cm sediment depth used here are published in Kienast et al. (2007). The radiocarbon 

age from 120cm core depth in core Y69-71P is from Kish (2003). 

 

3.3 Radiocarbon measurements 

Samples were radiocarbon-dated at National Ocean Sciences Accelerator Mass 

Spectrometry (NOSAMS) Facility at Woods Hole Oceanographic Institution, USA and 

Leibniz-Laboratory Kiel, Germany (Table 3 in the Appendix). Samples for TOC-dating 

were submitted unprocessed, while alkenone samples were submitted as CO2. For the 

conversion of purified alkenones into CO2, the samples were transferred into pre-

combusted quartz tubes and 150µg pre-combusted copper oxide (CuO) was added as an 

oxygen source. Using a vacuum line the samples were evacuated and flame-sealed. 



Afterwards the samples were combusted at 900°C for 8 h, and resulting CO2 was 

quantified and purified. 

Foraminiferal samples measured at NOSAMS were submitted at dry shells, cleaned 

ultrasonically and with acid leaching of ~5-10% of the raw calcite. Foraminiferal samples 

measured at Leibniz-Laboratory were submitted as graphite. The foraminifera were 

cleaned with H2O2 and converted to CO2 using phosphoric acid. The gas samples were 

furthermore purified and reduced to graphite with H2 and using iron powder as a catalyst. 

AMS measurements of carbonate and TOC samples at NOSAMS were carried out using 

standard methods (McNichol et al., 1994). AMS measurements of alkenone isolates were 

performed following the protocol for small samples (Pearson et al., 1998). 

Radiocarbon ages are reported as conventional radiocarbon ages (±1σ analytical 

error) referring to Stuiver and Polach (1977), which are corrected for carbon isotopic 

fractionation occurring during sample formation and processing. A conversion to 

calibrated (calendar) 14C ages is not applied when discussing the age relationships of the 

samples. However, calibrated ages of foraminifera are used when sedimentation rates 

are calculated, or age models are developed. For calibration, the Marine04 calibration 

data set including a 400 years marine reservoir correction (Hughen et al., 2004) was 

applied using the calibration software CALIB 5.0.2 (Stuiver et al. 2005). 

 



4. Results 

4.1 ME0005A-24JC 

The conventional 14C ages of the dated sediment constituents (Table 2, Fig. 2) 

range from the Holocene to the Last Glacial Maximum (LGM). Radiocarbon ages of all 

sediment fractions increase with core depth (Figure 2). Measured radiocarbon ages of the 

planktic foraminifera, alkenones, and TOC agree well, generally within 400±100 14C years. 

This age offset is not significant (within 2σ analytical errors), especially considering the 

measurement uncertainties for small sample sizes (<300µg), which are related to sample 

preparation and combustion backgrounds as well as the analytical errors of AMS 

measurement. Here, we consider reported radiocarbon age offsets insignificant if they 

are within 2σ analytical uncertainties. 

Alkenones are only up to 100±165 14C years older than foraminifera, except for 

the depth interval from 226.5 to 231.5cm where alkenones are 250±155 14C years 

younger than the foraminifera. Both values lie within 1σ error margins. TOC and 

alkenones also agree within 350±175 14C years. For the intervals 46-51cm and 76-81cm, 

only foraminifera and TOC 14C-data were obtained as the alkenone yields were too small 

to perform radiocarbon AMS measurements. 

Overall, we conclude that the alkenones are not significantly pre-aged relative to 

other sediment constituents. TOC and foraminiferal ages show a maximum age offset of 

only 215±45 14C years. The sample from core depth 345-350cm represents an exception 

where TOC is 400±100 14C years younger than corresponding foraminifera. Taking into 

account that the foraminiferal age was measured from 351cm core depth, the actual age 

offset between TOC and foraminifera should be less pronounced and not significant. 

 

4.2 Y69-71P 

The 14C-dated core depths for core Y69-71P cover marine oxygen isotope stages 1 

and 2 (Table 2, Fig. 3). All radiocarbon ages increase with core depth. Foraminifera and 

TOC ages agree within 355±70 14C years in most core depths. Exceptions are found at 

core depth 11-18cm (G. sacculifer) and 183-188cm (N. dutertrei) where TOC is 830±40 

and 960±180 14C years older than foraminifera, respectively. 

In most cases, we observe no systematic age offset between alkenones and TOC, 

which show age differences ranging from 80±140 to 800±255 14C years. Likewise, the 

age relationship between alkenones and foraminifera shows an inconsistent pattern with 

age offsets of 200±250 to 810±245 14C years.  

Significant age offsets are evident for the depth interval 253-258cm, where TOC 

(23,700±130 14C yr BP) and alkenones (23,600±230 14C yr BP) are 3220±390 and 

3320±435 14C years younger than corresponding foraminifera (26,920±370 14C yr BP). 

Furthermore, alkenone dates from near the core top (11-18cm and 25-30cm) are much 

older (up to 4530±330 14C years) than those of the other dated sediment components. 



Alkenones and TOC differ by up to 3700±330 14C years for the two uppermost depth 

intervals, and the former are 1240±270 to 4530±330 14C years older than foraminifera 

for the 11-18cm and 25-30cm samples. The alkenones themselves show no significant 

age difference between 11-18cm and 25-30cm core depth. We consider these alkenone-

radiocarbon ages to be less reliable due to very small sample sizes that were measured 

(<30µg C). 

 

4.3 MC16 

The dated core interval for core MC16 (Fig. 4, Table 2) spans the Holocene 

(<9000a BP). Foraminifera, alkenone and TOC 14C-ages agree to within a few hundred 

years, with a maximum age-offset of 670±95 14C years. The core-top radiocarbon ages 

for the depth intervals 1-2cm and 3-4cm have different age relationships between the 

different sediment constituents. For 1-2cm, foraminifera (2240±35 14C yr BP) are slightly 

older than TOC (2120±35 14C years). In contrast, for 3-4cm the foraminifera are younger 

(1715±30 14C yr BP) than corresponding TOC (2160±30 14C yr BP). The alkenones 

(1810±85 14C yr BP) were combined for the depth interval 0-4cm to yield enough 

material for radiocarbon dating. At 11-12cm core depth, all three sediment fractions 

agree to within 165±65 14C years. The foraminifera at 31-32cm (8530±50 14C yr BP) are 

slightly older than co-occurring alkenones (7860±80 14C yr BP) and TOC (8040±45 14C yr 

BP). 

 



5. Discussion 

Foraminifera are generally thought to most accurately represent the time of 

sediment deposition since their size and density are large enough to promote rapid 

sinking. This limits horizontal transport and lateral redistribution if bottom currents or 

tidal movements are weak. For the time intervals covered by our cores, these 

components are therefore in most cases considered the best estimate for the depositional 

age (uncorrected for reservoir or production effects). 

In contrast, organic matter is associated with the fine grain-sized and low-density 

material, which may easily be incorporated into nepheloid layer aggregates, and become 

resuspended and laterally transported prior to final burial. Hence, age offsets between 

marine biomarkers or TOC and foraminifera can indicate supply of older organic material 

that has previously been stored elsewhere. One benefit of compound-specific radiocarbon 

dating of phytoplankton-derived biomarkers is that biases due to input of pre-aged 

terrigenous or ancient organic matter (e.g., from erosion of bedrock or fossil fuel derived 

contamination) can be excluded.  

In most cases the reported 14C ages of the different sediment constituents, i.e. 

alkenones, foraminifera and TOC, agree well in all studied cores (Figures 2-4). Therefore, 

the alkenone radiocarbon ages do not indicate significant or systematic inputs of pre-

aged organic matter supplied via lateral sediment transport and redistribution. Likewise, 

the good agreement between the ages of marine planktic components (foraminifera and 

alkenones) and TOC excludes aged terrigenous material as a significant source of organic 

matter. The data do not preclude redistribution and lateral sediment transport, which is 

suggested by bulk and component sedimentation rates and 230Th normalization. If 

redistribution is occurring, however, it must be dominated by resuspension of material 

from the benthic “fluff” layers of essentially zero age at the time of redeposition. This 

probably implies relatively local transport within the east-west trending troughs from 

which the cores were raised (Fig. 1), if any occurs. 

14C age differences within 2σ error margins can in most cases be explained with 

measurement uncertainties. Sample preparation and chemical processing can introduce 

small amounts of carbon contaminant (carbon process blank) of unknown isotopic 

composition. This issue is especially critical for small sample sizes (<300µg) and 

compounds needing several processing steps like organic material. Nevertheless, small 

size alkenone purification in connection with 14C dating at NOSAMS Facility is reliable 

within 17‰ or 500 14C years, respectively (Mollenhauer et al., 2005b, Ohkouchi et al., 

2005b). 

Some depth intervals show pronounced and significant age offsets. In core Y69-

71P alkenones in the uppermost depth intervals (11-18cm and 25-30cm) are offset up to 

3880±330 14C years to N. dutertrei and TOC, but notably, TOC and N. dutertrei ages 

agree within 180±40 14C years for depth interval 11-18cm. TOC is even 330±50 14C 



years younger than N. dutertrei in 25-30cm core depth. Conversely, in the oldest depth 

interval N. dutertrei is 3320±435 14C years older than alkenones and TOC. The same 

pattern is evident in core MC16 at depth interval 30-32cm, where foraminiferal 14C ages 

are 670±95 and 490±65 14C years older than alkenones and TOC, respectively. These 

age relationships between foraminifera, TOC and alkenones are less consistent and more 

muted than previously found (Mollenhauer et al., 2003; Ohkouchi et al., 2002). Lateral 

supply of pre-aged organic matter to the uppermost core section of Y69-71 is regarded 

less likely because of the good agreement between TOC and foraminiferal ages. Since 

TOC, mostly of marine origin, and alkenones reside in the same size fraction, they are 

expected to be affected by the same sedimentation processes. Thus, if lateral sediment 

transport occurred it should have also supplied other pre-aged marine organic matter 

resulting in higher TOC ages. Potential causes for the discrepancies thus include 

analytical biases during sample processing, organic matter degradation during core 

storage, bioturbation, calcification depth, differential dissolution, and selective transport 

of either the foraminiferal or organic fractions. 

 

5.1 Potential biases of alkenone radiocarbon ages 

5.1.1 Large blank contribution to small samples 

Age offsets of alkenones at 11-18cm and 25-30cm core depth in Y69-71P, which 

exceed 4500 14C years, were measured from alkenone samples containing only 24 and 

29µg carbon, respectively. Using isotopic mass balance equation we can calculate the 

amount of contamination required if the reported age offsets between alkenones and 

foraminifera were due to addition of blank carbon during sample processing alone. 

Assuming a contamination with 14C-dead material (fraction modern carbon fMC=0), 

approximately 38% or 43% blank C for depth interval 11-18cm would yield the observed 

age offset relative to co-occurring N. dutertrei or G. sacculifer, respectively. Assuming an 

fMC=0.25, the blank carbon would account for 60% (N. dutertrei) or 61% (G. sacculifer) 

of the measured sample. For core depth 25-30cm, the same calculation results in 14% or 

39% (N. dutertrei) and 18% or 36% (G. sacculifer) blank C depending on whether an 

fMC value of 0 or 0.25 is used, respectively. This amount of contamination could have 

been introduced to the samples during any step of the sample preparation methodology. 

However, we consider addition of such large amounts of blank material unlikely, as CO2 

yields from combustion were close to the expected amount of carbon based on gas-

chromatographic quantification of purified alkenones. 

 

5.1.2 Degradation of alkenones during storage 

Core Y69-71P was retrieved in 1969 and had observed patches of surface mold 

when sampled. Selective bacterial degradation of alkenones can occur and the bacterial 

metabolic pathway includes isotopic fractionation during the degradation of alkenones to 



alkenols (Gong and Hollander, 1999; Rontani et al., 2005; Rontani et al., 2008; Sun et 

al., 2004). However, if bacterial activity occurred, it is not expected to influence the 

radiocarbon content of the alkenones, since radiocarbon data reported according to 

Stuiver and Polach (1977) are corrected for isotopic fractionation during sample 

formation, decay as well as processing. 

At present, we are unable to provide a satisfactory explanation for the 

unexpectedly old alkenones in the uppermost samples of Y69-71P. Unfortunately, sample 

availability does not permit us to repeat these measurements. 

 

5.2 Potential biases on foraminiferal ages 

For depth intervals 253-258cm of core Y69-71P and 30-32cm of core MC16 

foraminiferal 14C ages are significantly (>2σ analytical uncertainty) older than the other 

dated sediment constituents. If foraminiferal ages represent the best estimate of the 

time of deposition in locations affected by sediment transport we would not expect such 

an age relationship. Moreover, in previous studies, foraminifera were consistently 

reported to be the youngest sediment constituents (Mollenhauer et al., 2003; 

Mollenhauer et al., 2005a; Ohkouchi et al., 2002). Soxhlet and ASE extraction 

procedures seem not to introduce any significant uncertainties to the radiocarbon 

measurements of foraminiferal tests (Ohkouchi et al., 2005a). Likewise winnowing of the 

organic material, which is more susceptible to resuspension and transport, exposing relict 

foraminifera is unlikely. In addition to the above mentioned multiple lines of evidence for 

sediment focusing at the core sites, chirp subbottom profiler data for core Y69-71P (Lyle 

et al., 2005) show thick sediment coverage implying that the core was not taken at a 

location of sediment winnowing. 

 

5.2.1 Bioturbation 

For core MC16 core-top radiocarbon ages are elevated and essentially constant 

down to 12cm sediment depth for all dated components. This pattern can be explained 

with bioturbation and is in agreement with the existing literature. Aller et al. (1998) 

report maximum bioturbation depths of up to 20cm for cores from the Northern Panama 

Basin. 

A potential explanation for age offsets between the different components is age-

dependent or particle size induced differential bioturbation by benthic organisms (Smith 

et al., 1993; Thomson et al., 1995). Mixing depths may be greater for fine than coarse 

grain sizes or younger than older material. This process, when coupled to different input 

abundance histories can induce complex phasing and smoothing effects in different grain-

size fractions, especially where sedimentation rates are <10cm/kyr (Bard, 2001). 

However, differential bioturbation is an unlikely explanation for the age offsets observed 

at 253-258cm core depth of core Y69-71 showing >3000 14C years older foraminiferal 



ages compared to co-occurring alkenones and TOC. The sedimentation rate of core Y69-

71 ranges between 7 and 17cm/kyr (for 400cm core depth; Lyle et al., 2002). Lowest 

sedimentation rates are reconstructed for the interval from 8500 years to the core top, 

implying that those intervals may be more susceptible to bioturbation-induced offsets 

than glacial intervals. However, according to Bard (2001) bioturbation should in general 

not induce such a large age offset between different sediment constituents here.  

For core MC16 with an estimated sedimentation rate of 2.7-3.1cm/kyr (using 

calibrated radiocarbon ages) an age offset of up to 2500 years induced by differential 

bioturbation would be expected according to Bard (2001; equation 1) assuming 

bioturbation depths of 15cm (fine fraction) and 5cm (coarse fraction). This offset is much 

higher than the observed 14C age offset between foraminifera and organic matter 

(≤670±95 14C years). 

 

5.2.2 Calcification depth and differential dissolution of foraminiferal tests 

In the topmost core sections of core Y69-71P (11-18cm and 25-30cm) and core 

ME0005A-24JC (15-20cm) G. sacculifer is consistently younger than N. dutertrei by 

several hundred years. This finding is in line with the species-specific calcification depths 

in the euphotic zone, which are characterized by different DIC 14C contents. However, the 

differences in calcification depth are small (Fairbanks et al., 1982), so observed age 

offsets are greater than would be expected for pre-anthropogenic DIC 14C differences 

alone. 

A possible explanation for 14C age offsets between foraminiferal species 

introducing a bias towards younger ages might be differential dissolution in the sediment 

mixed layer (Barker et al., 2007), which can occur under the influence of carbonate ion 

undersaturated bottom waters, or as a result of respiratory CO2 release in the sediment. 

In the Panama Basin, the lysocline depth was observed at around 2800m (Thunell et al., 

1981), which is equivalent to the depths of our core sites ME0005A-24JC, Y69-71P and 

MC16. G. sacculifer is one of the most soluble species, whereas N. dutertrei is highly 

resistant (Berger, 1970). Thus differential dissolution of the more susceptible G. 

sacculifer could explain the younger radiocarbon ages of this species. Alternatively, 

differences in the species seasonal or interannual fluxes may contribute to the 14C 

differences. G. sacculifer contains algal symbionts and can survive oligotrophic conditions 

during intervals of low upwelling, while N. dutertrei thrives during upwelling events, 

which bring deeper, relatively 14C-depleted, nutrient-rich water to the sea surface 

(Watkins et al., 1996). While there are no G. sacculifer ages for the core depth 253-

258cm of core Y69-71P, published alkenone SST data (Kienast et al., 2006; Prahl et al., 

2006), faunal assemblage changes (Martinez et al., 2006) and coupled δ18O, δ13C and 

Mg/Ca SST data (Pena et al., 2008) do not suggest increased upwelling activity at our 

sites during the glacial interval, although stronger advection of cool waters upwelled into 



the eastern boundary current off Peru and Chile is probable (Feldberg and Mix, 2003). 

We therefore regard this process to be of minor importance for the explanation of old 

foraminiferal tests in 253-258cm core depth.  

 

5.2.3 Addition of secondary calcite  

Secondary calcification could be a possible cause for the foraminiferal 14C age of 

253-258cm in Y69-71P. Secondary calcification within the sediment by precipitation of 

pore water DIC derived from old carbon from deeper sediments could be responsible for 

older 14C ages of foraminifera (Barker et al., 2007). For an age offset of >3000 14C years, 

this requires the addition of large amounts of secondary calcite added to the foraminiferal 

tests. We can again use isotopic mass balance to calculate the amount of secondary 

calcite needed to cause the foraminiferal age offset. Assuming pore water DIC-addition 

from e.g. 15cm or 30cm deeper (fMC = 0.046 or 0.04 calculated with interpolated TOC-

based sedimentation rate), the required additional amount of older calcite is 280% and 

140%, respectively, which is implausible considering that only intact foraminifera without 

visual evidence of secondary calcite precipitation were handpicked for 14C analysis. 

 

5.2.4 Downslope transport of foraminifera 

Downslope transport from nearby abyssal hills or the Carnegie Ridge is considered 

a possible explanation for older foraminiferal ages. As described above, between 85° and 

86°W the central saddle of Carnegie Ridge shows an erosional valley, where incision into 

the acoustic basement from bottom water spillover is evident (Lonsdale, 1977; Van Andel 

et al., 1971). The Sand Dune Valley, located on the eastern side of this erosional feature, 

shows transverse dunes and barchans, which consist of sand-sized broken and intact 

Quaternary foraminiferal tests. The foraminiferal dunes are moved down-valley in a NW 

direction (towards our core locations) by the episodic spillover of bottom water across the 

central saddle of the Carnegie Ridge reaching velocities of >30cm/s (Lonsdale and Malfait, 

1974). The eroded material is likely accumulated in abyssal valleys like our core sites. 

Since the process is episodic in nature, we do not expect large additions of fossil 

foraminifera in all core depths (and thus no important contribution to mass accumulation 

rates), which could explain that only one of our studied depths intervals seems to be 

affected. If this is the case, however, the fact that we did not find the same offsets in 

core ME0005A-24JC (closest to Carnegie Ridge) as we did in Y69-71P (one basin to the 

north) would have to be random chance. 

Anomalously old foraminiferal 14C ages of core MC16 (30-32cm) might be 

explained by downslope transport from the Malpelo Ridge, which is predominantly 

covered with carbonate from intact and broken foraminiferal tests. But sediment 

winnowing from the Malpelo Ridge may be less extensive since the concentration of more 



readily mobilizable fine-grained carbonate on the Malpelo Ridge is higher than on the 

Carnegie Ridge (Moore et al., 1973). 

 

5.3 Potential particle sources and timescales of lateral transport 

Despite potential radiocarbon age biases related to the above mentioned 

processes, all sediment constituents agree well in age in most of the core depths of cores 

ME0005-24JC, Y69-71P and MC16 and thus sediment redistribution likely occurs syn-

depositionally. For our study area, especially for cores ME0005A-24JC and Y69-71P, the 

syn-depositionally transported sedimentary material is probably derived from nearby 

abyssal hills by interaction with abyssal tidal flow (internal tides). Enhanced current 

velocities near the seafloor may enhance the small scale vertical shear and thereby 

increase the probability of sediment erosion and redistribution. The resuspended 

sediment is injected into the near-bottom water, where it is laterally displaced away from 

the topographical highs (Turnewitsch et al., 2008). This is in agreement with the 230Thxs 

data from Kienast et al. (2007), as the supplied material is likely to have been 

transported by bottom currents, according to the basic assumptions of the 230Th 

normalization method (Francois et al., 2004). Based on modeling studies, Egbert et al. 

(2004) reconstructed the tidal kinetic energy and tidal dissipation in the deep ocean for 

the LGM. Their results show enhanced global tidal dissipation during the LGM compared 

to present day conditions, especially in the deep ocean. This way, enhanced lateral 

transport could explain high sediment focusing factors in the Panama Basin during the 

last glacial. Nevertheless, internal tides do also occur in the Holocene and could have 

contributed to the apparent sediment focusing, even though they were weaker than 

during the LGM (Kienast et al., 2007). 

Honjo et al. (1992) present data for the northern Panama Basin, which give 

evidence for strongest deep currents in approximately 2000m water depth. This is in 

good agreement with our assumption that the resuspended material derives from the 

topographic highs around our locations, which rise to approximately 2300-1800m water 

depth (Fig. 1B). Likewise, the measured current velocities (on average 5-7cm/s) are in 

the range needed to resuspend low-density material (organic matter), but to not affect 

denser material like foraminifera. 

Considering the minor age offsets of the radiocarbon-dated sediment constituents 

in most of the samples of cores ME0005A-24JC, Y69-71P and MC16, the apparent lack of 

aged terrigenous organic matter, and the 230Thxs derived focusing factors of Kienast et al. 

(2007), we suggest that laterally supplied material is rapidly transported and 

redistributed by bottom currents soon after particle formation or particle sedimentation. 

Using 234Th/238U disequilibria, Turnewitsch et al. (2008) calculated residence times of 

laterally transported particulate matter resuspended from a sloping seafloor by internal 

tides. The residence time of those particles in near-bottom water traced by 234Th is <2-3 



weeks. This is consistent with sediment redistribution on a local scale. However, this 

residence time might significantly increase by further interaction with the kilometer-scale 

topography, but the overall magnitude is most probably below the analytical 

uncertainties associated with radiocarbon dating. 

Furthermore, '
37
kU  (alkenone unsaturation index) derived sea surface 

temperatures (SST) of cores ME0005-24JC (Kienast et al., 2006) and Y69-71P (Prahl et 

al., 2006) and our own data (Appendix) agree in the topmost samples (late Holocene) 

with annual mean SSTs at this site (Locarnini et al., 2006). This argues against transport 

processes over long distances, since the '
37
kU  index would reflect the SST signal of the 

region of the alkenone origin (Benthien and Müller, 2000; Mollenhauer et al., 2006; 

Ohkouchi et al., 2002).  

Moreover, cores ME0005-24JC and Y69-71P (Fig. 1) as well as core MC16 (not 

shown) are located in narrow east-west trending troughs, which are bordered by the 

Carnegie Ridge in the south and the Cocos-Nazca Rise in the north. This surrounding 

large-scale topography restricts the potential source regions for bottom current driven 

advection and supports the assumption that laterally transported material is mainly 

derived from nearby topographic highs within the east-west trending troughs. Contrary, 

the supply of pre-aged foraminifera from the Carnegie Ridge (at ~130km from the core 

sites) might be triggered by a yet unknown but different mechanism than tidal 

dissipation. Since the sediments of its northern flank consist of relict foraminiferal sands, 

high concentrations of old alkenones are not expected at this erosional site. Modern 

alkenones from the overlying water column would, however, not affect the '
37
kU  based 

SST estimate as they would reflect conditions similar to those alkenones synthesized at 

our core sites (∆SST <0.7°C; Locarnini et al., 2006). However, old foraminiferal tests 

would record Mg/Ca SST from the time of synthesis. Significant disagreements between 

the '
37
kU  exist in early Holocene, deglacial and glacial intervals of these cores, however. 

The origin of these differences is not known, but is under consideration (Prahl and 

Kienast, personal communication 2009). Our radiocarbon data constrain these 

considerations and exclude the possibility that offsets in '
37
kU  between these cores 

reflects differential input of older materials. 

For core MC16 our 14C data do not necessarily imply resuspension and 

redistribution of organic matter. Nevertheless, this location is influenced by the bottom 

water circulation of the Panama Basin (Figure 1), and is situated just south of the 

Malpelo Ridge, which is mostly covered with fine-grained sediments that may serve as a 

source of advected sediment (Druffel et al., 1998; Moore et al., 1973; Van Andel, 1973). 

For core P7, which is located in the Central Panama Basin NW of core MC16 in a similar 

water depth, Kienast et al. (2007) measured slightly elevated recent 230Thxs levels and 



calculated higher focusing for the glacial. If we assume that cores P7 and MC16 are 

influenced by a similar sediment depositional pattern, it is likely that MC16 is also 

influenced by lateral advection of sediments. Our 14C results, which mostly show 

insignificant age differences between alkenones, foraminifera and TOC, indicate that like 

for cores ME0005A-24JC and Y69-71P, the timescale for lateral transport is rapid and 

occurs syndepostionally, i.e. less than a few decades after particle formation and 

synchronous within the uncertainty associated with the radiocarbon method. As the '
37
kU  

derived SST (not shown) also matches the mean annual temperature at this site (WOA 

2005), we consider the advection processes to also occur on a local (trough-wide) scale. 

 

5.4 Implications for paleoceanographic studies in the southern Panama Basin 

Paleoceanographic studies reconstructing marine productivity and vertical carbon 

export using accumulation rates of different sedimentary constituents have shown higher 

glacial export rates compared to interglacials (Lyle et al., 2002; Paytan et al., 1996; 

Sarnthein et al., 1988). Contrary results were obtained in studies using constant flux 

proxies (Kienast et al. 2007; Loubere, 1999; Loubere, 2000; Loubere et al., 2003; 

Loubere et al., 2004) and faunal assemblages (Loubere, 1999; Martinez et al., 2006) 

implying reduced glacial productivity and enhanced sediment focusing. In light of this 

paradox, the applicability of the 230Th method in the in the Panama Basin is controversial 

(Broecker, 2008; Francois et al., 2007; Kienast et al., 2007; Lyle et al., 2005; Lyle et al., 

2007; Siddall et al., 2008). 

Our results have important implications for these paleoceanographic studies. Since 

the age discrepancy between the different sediment components is small and the 

transported material is likely to be advected from nearby topography the rapid sediment 

transport processes within the Panama Basin do not lead to a decoupling of proxy records 

residing in different grain size fractions. Therefore, combined records of paleoproxies 

from different grain-size fractions as presented by Kienast et al. (2006) and Prahl et al. 

(2006) can indeed be considered coeval in this region. For example, apparent offsets 

between paleotemperatures estimated from '
37
kU  and those estimated from Mg/Ca ratios 

in foraminifera cannot be dismissed as artifacts of local reworking, but must be explained 

based on environmental influences on the respective proxies (Mix, 2006). However, one 

aspect revealed by our study is the potential selective transport of foraminiferal sands 

washed downslope from the Carnegie Ridge, which might bias paleoceanographic 

reconstructions based on foraminiferal tests. Our results suggest the occurrence of 

episodic downslope transport particularly for the glacial time period. The unexpectedly 

old N. dutertrei in core depth 253-258cm and the deviation of foraminiferal 14C ages from 

Clark et al. (2004) with our data of core Y69-71P furthermore suggests that the age 

model for this core used in Kienast et al. (2007) might need to be revised. This implies 



that 230Th derived focusing factors would even increase for marine oxygen isotope stage 

2 time interval used in Kienast et al. (2007). 

 

Irrespective of which of the mechanisms suggested to affect 230Thxs inventories 

(i.e. lateral redistribution or water column scavenging, or any other yet unknown 

influence) is the true controlling process, our data give strong evidence for a local 

(trough-wide) source of all marine sediment constituents. Evidence for delivery of distant 

marine organic matter or addition of any pre-aged terrigenous components supplied from 

the continental margins or by dust is lacking. 



6. Summary and Conclusion 

Radiocarbon ages of alkenones, foraminifera and TOC in most core depths of cores 

ME0005A-24JC, Y69-71P and MC16 have insignificant 14C age offsets between the 

different sediment components, arguing against long-distance lateral supply and 

deposition of pre-aged allochthonous material from marine or terrestrial sources in the 

Panama Basin. This finding constrains mechanisms of sediment focusing inferred from 

230Thxs data (Kienast et al., 2007). 

Allochthonous material in this region likely stems from local particle winnowing 

from kilometer-scale topographic highs within the east-west trending troughs by internal 

tidal activity or bottom currents that return recently sedimented particles to bottom 

waters. These tidal water movements or bottom currents locally transports and 

redistributes the particles within less than a few decades after particle formation, equal 

to the uncertainty of the radiocarbon method. 

Spillover of fast bottom currents originating in the Peru Basin and crossing the 

Carnegie Ridge may occur episodically, transporting coarser-grained particles downslope 

to the Southern Panama Basin. A bias in paleoceanographic reconstructions based on 

foraminiferal tests for core Y69-71P might arise from this process, although it is not 

obvious why similar effects would not have been found in core ME0005A-24JC which is 

closer to Carnegie Ridge and in slightly deeper water. 

The proximity and rapidity of transport precludes extensive alteration of the 

entrained pelagic organic matter. Enhanced tidally related current velocites in the abyssal 

ocean during lowstands of sea level may explain higher sediment focusing factors found 

in the Panama Basin during glacial time compared to the Holocene. 
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Figures 
 

 
Figure 1. A) Study area and core locations. Grey arrows indicate flow directions of bottom 
currents. B) High resolution swath bathymetry image showing the abyssal hill topography 
around cores ME0005A-24JC and Y69-71P. Note east-west trending troughs. 



 
Figure 2. Conventional radiocarbon ages of alkenones, foraminifera (N. dutertrei and G. 
sacculifer) and Total Organic Carbon (TOC) for core ME0005A-24JC and the age-offsets 
between alkenones and foraminifera (open circles) and TOC and foraminifera (stars). 
Error bars indicate 1σ analytical uncertainty (the propagated error is given in the lower 
panel). 



 
Figure 3. Conventional radiocarbon ages of alkenones, foraminifera (N. dutertrei and G. 
sacculifer) and Total Organic Carbon (TOC) for core Y69-71P and the age-offsets between 
alkenones and foraminifera (open circles) and TOC and foraminifera (stars). Error bars 
indicate 1σ analytical uncertainty (the propagated error is given in the lower panel). 



 
Figure 4. Conventional radiocarbon ages of alkenones, foraminifera (N. dutertrei) and 
Total Organic Carbon (TOC) for core MC16 and the age-offsets between alkenones and 
foraminifera (open circles) and TOC and foraminifera (stars). Error bars indicate 1σ 
analytical uncertainty (the propagated error is given in the lower panel). 
 



Tables 
 
Core Latitude (°N) Longitude (°W) Water depth (m) 

ME0005A-24JC 0°01.3’ 86°27.8’ 2941 

Y69-71P 0°06’ 86°29’ 2740 

MC16 1°51.6’ 86°18.3’ 2767 

Table 1. Core locations. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Radiocarbon data (fMC; fraction modern carbon and conventional 14C ages) of foraminifera, TOC and alkenones of cores ME0005A-
24JC, Y69-71P and MC16. Depths in parentheses refer to foraminiferal samples, if different from organic matter samples. Analytical 
uncertainties are given as 1σ-analytical errors. (a) data from Kienast et al. (2007), (b) data from Clark et al. (2004). 

  Foraminifera      TOC     Alkenones   

 
 Species fMC 14C age  

(yrs BP) 
 fMC 14C age  

(yrs BP) 
 fMC 14C age  

(yrs BP) 
Sample Core depth (cm)          

ME0005A-24JC 15-20 N. dutertrei 0.6670±0.0025 3 255±30  0.6849±0.0029 3 040±35  0.6635±0.0078 3 290±95 

 15-20 G. sacculifer 0.6794±0.0025 3 105±30       

 46-51 N. dutertrei 0.4129±0.0022 7 100±40  0.4130±0.0024 7 100±45    

 76-81 (81) N. dutertreia 0.3246±0.0016 9 040±40  0.3263±0.0017 9 000±40    

 226.5-231.5 (230) N. dutertreia 0.1772±0.0008 13 900±35  0.1764±0.0014 13 950±65  0.1822±0.0035 13 650±150 

 285-290 (291) N. dutertreia 0.1416±0.0015 15 700±85  0.1382±0.0013 15 900±75  0.1402±0.0025 15 800±140 

 345-351 (351) N. dutertreia 0.1057±0.0009 18 050±65  0.1114±0.0010 17 650±75  0.1061±0.0021 18 000±160 

           

Y69-71P 11-18 N. dutertrei 0.6681±0.0022 3 240±25  0.6530±0.0024 3 420±30  0.4120±0.0168 7 120±330 

 11-18 G. sacculifer 0.7247±0.0023 2 590±25       

 25-30 N. dutertrei 0.4674±0.0019 6 110±30  0.4871±0.0024 5 780±40  0.4004±0.0136 7 350±270 

 25-30 G. sacculifer 0.4864±0.0043 5 790±70       

 31-39     0.4194±0.0019 6 980±35    

 50 N. dutertreib 0.2968±0.0015 9 760±40       

 51-56 N. dutertrei 0.2987±0.0022 9 705±60  0.3120±0.0019 9 350±45  0.3090±0.0052 9 430±130 

 81-89     0.2377±0.0017 11 550±60  0.2183±0.0067 12 200±250 

 117-123 (120) N. dutertreib 0.1604±0.0013 14 700±65  0.1678±0.0017 14 350±80  0.1567±0.0047 14 900±240 

 163-167     0.1328±0.0014 16 200±80  0.1208±0.0036 17 000±240 

 180 N. dutertreib 0.0920±0.0008 19 150±70       

 183-188 N. dutertrei 0.1106±0.0019 17 690±140  0.0979±0.0013 18 650±110  0.0998±0.0024 18 500±200 

 253-258 N. dutertrei 0.0350±0.0016 26 920±370  0.0521±0.0009 23 700±130  0.0531±0.0015 23 600±230 

 260 N. dutertreia 0.0305±0.0007 28 000±190       

           

MC16 0-4        0.7981±0.0085 1 810±85 

 1-2 N. dutertrei 0.7565±0.0034 2 240±35  0.7682±0.0033 2 120±35    

 3-4 N. dutertrei 0.8076±0.0030 1 715±30  0.7644±0.0027 2 160±30    

 11-12 N. dutertrei 0.7792±0.0029 2 005±30  0.7768±0.0030 2 030±30  0.7630±0.0059 2 170±60 

  31-32 N. dutertrei 0.3458±0.0022 8 530±50   0.3675±0.0021 8 040±45   0.3760±0.0039 7 860±80 



Appendix: Supplementary data 

 

A. Potential effects of sediment transport on '
37
kU  derived sea surface temperatures 

Comparison of the '
37
kU  derived SSTs of both cores ME0005-24JC and Y69-71P 

published by Kienast et al. (2006) and Prahl et al. (2006) shows a general temperature 

offset of approximately 1 to 1.5°C (with Y69-71P being colder) although both cores 

should reflect the same SST due to their proximity. If we use our 14C data to develop a 

new age model for core Y69-71P, the temperature offset is reduced for the deglacial and 

disappears for the early to middle Holocene. But for the uppermost core depths, 

reflecting the late Holocene, the temperature offset of ~1°C remains. This offset prevails 

mainly in the core interval where our data show alkenones older than foraminifera and 

TOC (11-18cm and 25-30cm). 

We can calculate the potential contribution of alkenones reflecting colder 

temperatures (e.g. the time interval of Heinrich event 1 (H1)) and use isotopic mass 

balance to quantify the likely effect on the 14C age assuming that the '
37
kU  derived SSTs 

estimated for core ME0005-24JC reflect the “true” SSTs. For depth interval 25-30cm an 

H1 alkenone contribution of approximately 17% (fMC=0.1567) alters the “true” alkenone 

depositional age (fMC=0.4674; assumed to be reflected by the equivalent foraminiferal 

age) to the actually measured age (fMC=0.4004 measured; fMC=0.4140 calculated). 

Therefore, if the observed age offset between alkenones and foraminifera and TOC for 

depth intervals 25-30cm is real, contribution of older alkenones (H1) could be a potential 

explanation for that age offset. Contrary, the age offset evident for depth interval 11-

18cm cannot be explained by contribution of approximately 22% of H1 alkenones alone. 

Applying the same mass balance equation as above does not alter the alkenone age 

sufficiently (fMC=0.4120 measured; fMC=0.5556 calculated). 

If, as discussed above, the alkenone contamination is radiocarbon dead (fMC=0) 

we can quantify the '
37
kU  derived SST signal of those advected alkenones. The mass 

balance derived potential contamination of 38% for depth interval 11-18cm (5.1.1) would 

require alkenones synthesized in sea surface waters with approximately 22.7°C. This 

temperature is well within the range of the temperatures for the time interval 50-150kyr 

measured by Prahl et al. [2006]. Again, if the observed age offset between alkenone and 

foraminiferal and TOC 14C ages is real, addition of 14C-free alkenones might be a possible 

explanation. As discussed above, the material is likely to be delivered from nearby 

topography. However, the potential source areas (surrounding abyssal hills) must have 

been different at the respective times to explain the different ages (H1 vs. >50kyr) 

required for the advected alkenones to result in the measured age offsets to foraminifera 

and TOC. 
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Figure 5. '
37
kU  derived SSTs for core ME0005-24JC (Kienast et al. 2007) and Y69-71P 

(Prahl et al. 2006; this study). For core Y69-71P SSTs are additionally plotted using a 

modified age model based on our foraminiferal 14C results. 
 
 



B. Receipt numbers of radiocarbon analysis 

 
   Foraminifera      TOC    Alkenones 

Core depth (cm)  Species receipt #  receipt #  receipt # 

Sample 

        

ME0005A-24JC 15-20  N. dutertrei KIA 34472  58954  58950 

 15-20  G. sacculifer KIA 34471     

 46-51  N. dutertrei 66556  66554   

 76-81     66555   

 81  N. dutertrei 33431     

 226,5-231,5     58955  58951 

 230  N. dutertrei 33432     

 285,5-290,5     58956  58952 

 291  N. dutertrei 33433     

 345-350     58957  58953 

 351  N. dutertrei 33434     

         

Y69-71P 11-18  N. dutertrei 43983  43167  43161 

 11-18  G. sacculifer 43984     

 25-30  N. dutertrei 43985  43168  43162 

 25-30  G. sacculifer 43986     

 31-39     40605   

 51-56  N. dutertrei KIA 35966  63256  63250 

 81-89     40607  40722 

 117-123     40608  40723 

 120  N. dutertrei 33428     

 163-167        

 183-188  N. dutertrei KIA 35967  63257  63251 

 253-258  N. dutertrei KIA 35968  63258  63252 

         

MC16 1-2  N. dutertrei KIA 35969  63259   

 3-4  N. dutertrei KIA 35970  63260   

 0-4       63253 

 10-12       63254 

 11-12  N. dutertrei KIA 35971  63261   

 30-32       63255 

  31-32  N. dutertrei KIA 35972   63262    

Table 3. Receipt numbers from NOSAMS and Leibniz laboratory (KIA numbers, in italics). 

 


