43 research outputs found

    Virasoro and KdV

    No full text

    Étale Covers and Fundamental Groups of Schematic Finite Spaces

    Get PDF
    [EN] We introduce the category of finite étale covers of an arbitraryschematic space X and show that, equipped with an appropriate naturalfiber functor, it is a Galois Category. This allows us to define the étale fundamental group of schematic spaces. If X is a finite model of a schemeS, we show that the resulting Galois theory on X coincides with theclassical theory of finite étale covers on S, and therefore, we recover the classical étale fundamental group introduced by Grothendieck. Toprove these results, it is crucial to find a suitable geometric notion ofconnectedness for schematic spaces and also to study their geometric points. We achieve these goals by means of the strong cohomologicalconstraints enjoyed by schematic spaces.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE

    Introduction to Fourier-Mukai and Nahm transforms with an application to coherent systems on elliptic curves

    Get PDF
    These notes record, in a slightly expanded way, the lectures given by the first two authors at the College on Moduli Spaces of Vector Bundles that took place at CIMAT in Guanajuato, Mexico, from November 27th to December 8th, 2006. The college, together with the ensuing conference on the same topic, was held in occasion of Peter Newstead's 65th anniversary. It has been a great pleasure and a privilege to contribute to celebrate Peter's outstanding achievements in algebraic geometry and his lifelong dedication to the progress of mathematical knowledge. We warmly thank the organizers of the college and conference for inviting us, thus allowing us to participate in Peter's celebration. The main emphasis in these notes is on the Fourier-Mukai transforms as equivalences of derived categories of coherent sheaves on algebraic varieties. For this reason, the first Section is devoted to a basic (but we hope, understandable) introduction to derived categories. In the second Section we develop the basic theory of Fourier-Mukai transforms. Another aim of our lectures was to outline the relations between Fourier-Mukai and Nahm transforms. This is the topic of Section 3. Finally, Section 4 is devoted to the application of the theory of Fourier-Mukai transforms to the study of coherent systems. This is a review paper. Most of the material is taken from [BBH08] and [HT08], although the presentation is different in some places

    Extinction of Hepatitis C Virus by Ribavirin in Hepatoma Cells Involves Lethal Mutagenesis

    Get PDF
    Lethal mutagenesis, or virus extinction produced by enhanced mutation rates, is under investigation as an antiviral strategy that aims at counteracting the adaptive capacity of viral quasispecies, and avoiding selection of antiviral-escape mutants. To explore lethal mutagenesis of hepatitis C virus (HCV), it is important to establish whether ribavirin, the purine nucleoside analogue used in anti-HCV therapy, acts as a mutagenic agent during virus replication in cell culture. Here we report the effect of ribavirin during serial passages of HCV in human hepatoma Huh-7.5 cells, regarding viral progeny production and complexity of mutant spectra. Ribavirin produced an increase of mutant spectrum complexity and of the transition types associated with ribavirin mutagenesis, resulting in HCV extinction. Ribavirin-mediated depletion of intracellular GTP was not the major contributory factor to mutagenesis since mycophenolic acid evoked a similar decrease in GTP without an increase in mutant spectrum complexity. The intracellular concentration of the other nucleoside-triphosphates was elevated as a result of ribavirin treatment. Mycophenolic acid extinguished HCV without an intervening mutagenic activity. Ribavirin-mediated, but not mycophenolic acid-mediated, extinction of HCV occurred via a decrease of specific infectivity, a feature typical of lethal mutagenesis. We discuss some possibilities to explain disparate results on ribavirin mutagenesis of HCV

    Weak gauge principle and electric charge quantization

    Full text link
    Starting from a weak gauge principle we give a new and critical revision of the argument leading to charge quantization on arbitrary spacetimes. The main differences of our approach with respect to previous works appear on spacetimes with non trivial torsion elements on its second integral cohomology group. We show that in these spacetimes there can be topologically non-trivial configurations of charged fields which do not imply charge quantization. However, the existence of a non-exact electromagnetic field always implies the quantization of charges. Another consequence of the theory for spacetimes with torsion is the fact that it gives rise to two natural quantization units that could be identified with the electric quantization unit (realized inside the quarks) and with the electron charge. In this framework the color charge can have a topological origin, with the number of colors being related to the order of the torsion subgroup. Finally, we discuss the possibility that the quantization of charge may be due to a weak non-exact component of the electromagnetic field extended over cosmological scales.Comment: Latex2e, 24 pages, no figure

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore