106 research outputs found

    Tag-Aware Recommender Systems: A State-of-the-art Survey

    Get PDF
    In the past decade, Social Tagging Systems have attracted increasing attention from both physical and computer science communities. Besides the underlying structure and dynamics of tagging systems, many efforts have been addressed to unify tagging information to reveal user behaviors and preferences, extract the latent semantic relations among items, make recommendations, and so on. Specifically, this article summarizes recent progress about tag-aware recommender systems, emphasizing on the contributions from three mainstream perspectives and approaches: network-based methods, tensor-based methods, and the topic-based methods. Finally, we outline some other tag-related works and future challenges of tag-aware recommendation algorithms.Comment: 19 pages, 3 figure

    High-Dimensional Data Clustering

    Get PDF
    Clustering in high-dimensional spaces is a difficult problem which is recurrent in many domains, for example in image analysis. The difficulty is due to the fact that high-dimensional data usually live in different low-dimensional subspaces hidden in the original space. This paper presents a family of Gaussian mixture models designed for high-dimensional data which combine the ideas of dimension reduction and parsimonious modeling. These models give rise to a clustering method based on the Expectation-Maximization algorithm which is called High-Dimensional Data Clustering (HDDC). In order to correctly fit the data, HDDC estimates the specific subspace and the intrinsic dimension of each group. Our experiments on artificial and real datasets show that HDDC outperforms existing methods for clustering high-dimensional dat

    Activity pacing: moving beyond taking breaks and slowing down

    Get PDF
    This brief communication responds to the paper by Jeong and Cho (Qual Life Res 26(4):903–911, 2017) that has described activity pacing in limited terms of adjusting activities through going at a slower rate and taking breaks. Activity pacing was reported as not involving goal setting, in comparison to other strategies for long-term conditions such as Acceptance and Commitment Therapy. This brief communication aims to challenge this limited perception of activity pacing in light of numerous studies that recognise pacing to be a more complex strategy. Pacing is considered to be a multifaceted coping strategy, including broad themes of not only adjusting activities, but also planning activities, having consistent activity levels, acceptance of current abilities and gradually increasing activities, and one that includes goal setting as a key facet. It is essential that pacing is both defined and measured as a multifaceted strategy in order to assess the outcomes of pacing, and for meaningful comparisons with other strategies regarding efficacy for the management of long-term conditions

    Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance.</p> <p>Results</p> <p>Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only) and 6D (position and orientation) distributions of residue pairs. The performance of the 1D (residue separation only), 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation optimization using the 6D scoring functions. The sensitivity of this method to backbone structure perturbations was compared with that of fixed-backbone all-atom modeling by determining the similarities between optimal sequences for two different backbone structures within the same protein family. The results showed that the design method using 6D scoring functions was more robust to small variations in backbone structure than the all-atom design method.</p> <p>Conclusions</p> <p>Backbone-only residue pair scoring functions that account for all six relative degrees of freedom are the most accurate and including the scores of homologs further improves the accuracy in threading applications. The 6D scoring function outperformed several side chain-dependent potentials while avoiding time-consuming and error prone side chain structure prediction. These scoring functions are particularly useful as an initial filter in protein design problems before applying all-atom modeling.</p

    Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder

    Get PDF
    Studies of the major psychoses, schizophrenia (SZ) and bipolar disorder (BD), have traditionally focused on genetic and environmental risk factors, although more recent work has highlighted an additional role for epigenetic processes in mediating susceptibility. Since monozygotic (MZ) twins share a common DNA sequence, their study represents an ideal design for investigating the contribution of epigenetic factors to disease etiology. We performed a genome-wide analysis of DNA methylation on peripheral blood DNA samples obtained from a unique sample of MZ twin pairs discordant for major psychosis. Numerous loci demonstrated disease-associated DNA methylation differences between twins discordant for SZ and BD individually, and together as a combined major psychosis group. Pathway analysis of our top loci highlighted a significant enrichment of epigenetic changes in biological networks and pathways directly relevant to psychiatric disorder and neurodevelopment. The top psychosis-associated, differentially methylated region, significantly hypomethylated in affected twins, was located in the promoter of ST6GALNAC1 overlapping a previously reported rare genomic duplication observed in SZ. The mean DNA methylation difference at this locus was 6%, but there was considerable heterogeneity between families, with some twin pairs showing a 20% difference in methylation. We subsequently assessed this region in an independent sample of postmortem brain tissue from affected individuals and controls, finding marked hypomethylation (>25%) in a subset of psychosis patients. Overall, our data provide further evidence to support a role for DNA methylation differences in mediating phenotypic differences between MZ twins and in the etiology of both SZ and BD

    Estimation of allele frequency and association mapping using next-generation sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimation of allele frequency is of fundamental importance in population genetic analyses and in association mapping. In most studies using next-generation sequencing, a cost effective approach is to use medium or low-coverage data (e.g., < 15<it>X</it>). However, SNP calling and allele frequency estimation in such studies is associated with substantial statistical uncertainty because of varying coverage and high error rates.</p> <p>Results</p> <p>We evaluate a new maximum likelihood method for estimating allele frequencies in low and medium coverage next-generation sequencing data. The method is based on integrating over uncertainty in the data for each individual rather than first calling genotypes. This method can be applied to directly test for associations in case/control studies. We use simulations to compare the likelihood method to methods based on genotype calling, and show that the likelihood method outperforms the genotype calling methods in terms of: (1) accuracy of allele frequency estimation, (2) accuracy of the estimation of the distribution of allele frequencies across neutrally evolving sites, and (3) statistical power in association mapping studies. Using real re-sequencing data from 200 individuals obtained from an exon-capture experiment, we show that the patterns observed in the simulations are also found in real data.</p> <p>Conclusions</p> <p>Overall, our results suggest that association mapping and estimation of allele frequencies should not be based on genotype calling in low to medium coverage data. Furthermore, if genotype calling methods are used, it is usually better not to filter genotypes based on the call confidence score.</p

    Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens

    Get PDF
    Ronald Ross and George Macdonald are credited with developing a mathematical model of mosquito-borne pathogen transmission. A systematic historical review suggests that several mathematicians and scientists contributed to development of the Ross-Macdonald model over a period of 70 years. Ross developed two different mathematical models, Macdonald a third, and various “Ross-Macdonald” mathematical models exist. Ross-Macdonald models are best defined by a consensus set of assumptions. The mathematical model is just one part of a theory for the dynamics and control of mosquito-transmitted pathogens that also includes epidemiological and entomological concepts and metrics for measuring transmission. All the basic elements of the theory had fallen into place by the end of the Global Malaria Eradication Programme (GMEP, 1955–1969) with the concept of vectorial capacity, methods for measuring key components of transmission by mosquitoes, and a quantitative theory of vector control. The Ross-Macdonald theory has since played a central role in development of research on mosquito-borne pathogen transmission and the development of strategies for mosquito-borne disease prevention

    Behavioural indicators of welfare in farmed fish

    Get PDF
    Behaviour represents a reaction to the environment as fish perceive it and is therefore a key element of fish welfare. This review summarises the main findings on how behavioural changes have been used to assess welfare in farmed fish, using both functional and feeling-based approaches. Changes in foraging behaviour, ventilatory activity, aggression, individual and group swimming behaviour, stereotypic and abnormal behaviour have been linked with acute and chronic stressors in aquaculture and can therefore be regarded as likely indicators of poor welfare. On the contrary, measurements of exploratory behaviour, feed anticipatory activity and reward-related operant behaviour are beginning to be considered as indicators of positive emotions and welfare in fish. Despite the lack of scientific agreement about the existence of sentience in fish, the possibility that they are capable of both positive and negative emotions may contribute to the development of new strategies (e. g. environmental enrichment) to promote good welfare. Numerous studies that use behavioural indicators of welfare show that behavioural changes can be interpreted as either good or poor welfare depending on the fish species. It is therefore essential to understand the species-specific biology before drawing any conclusions in relation to welfare. In addition, different individuals within the same species may exhibit divergent coping strategies towards stressors, and what is tolerated by some individuals may be detrimental to others. Therefore, the assessment of welfare in a few individuals may not represent the average welfare of a group and vice versa. This underlines the need to develop on-farm, operational behavioural welfare indicators that can be easily used to assess not only the individual welfare but also the welfare of the whole group (e. g. spatial distribution). With the ongoing development of video technology and image processing, the on-farm surveillance of behaviour may in the near future represent a low-cost, noninvasive tool to assess the welfare of farmed fish.Fundação para a Ciência e Tecnologia, Portugal [SFRH/BPD/42015/2007]info:eu-repo/semantics/publishedVersio
    corecore