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Summary. Clustering in high-dimensional spaces is a recurrent problem in many domains,
for example in object recognition. High-dimensional data usually live in different low-
dimensional subspaces hidden in the original space. This paper presents a clustering approach
which estimates the specific subspace and the intrinsic dimension of each class. Our ap-
proach adapts the Gaussian mixture model framework to high-dimensional data and estimates
the parameters which best fit the data. We obtain a robust clustering method called High-
Dimensional Data Clustering (HDDC). We apply HDDC to locateobjects in natural images
in a probabilistic framework. Experiments on a recently proposed database demonstrate the
effectiveness of our clustering method for category localization.

Key words: Model-based clustering, high-dimensional data, dimension reduction,
dimension reduction, parsimonious models.

1 Introduction

In many scientific domains, the measured observations are high-dimensional. For ex-
ample, visual descriptors used in object recognition are often high-dimensional and
this penalizes classification methods and consequently recognition. Popular cluster-
ing methods are based on the Gaussian mixture model and show adisappointing
behavior when the size of the training dataset is too small compared to the num-
ber of parameters to estimate. To avoid overfitting, it is therefore necessary to find
a balance between the number of parameters to estimate and the generality of the
model. In this paper we propose a Gaussian mixture model which determines the
specific subspace in which each class is located and therefore limits the number of
parameters to estimate. The Expectation-Maximization (EM) algorithm [5] is used
for parameter estimation and the intrinsic dimension of each class is determined
automatically with the scree test of Cattell. This allows toderive a robust cluster-
ing method in high-dimensional spaces, called High Dimensional Data Clustering
(HDDC). In order to further limit the number of parameters, it is possible to make
additional assumptions on the model. We can for example assume that classes are
spherical in their subspaces or fix some parameters to be common between classes.
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We evaluate HDDC on a recently proposed visual recognition dataset [4]. We com-
pare HDDC to standard clustering methods and to the state of the art results. We
show that our approach outperforms existing results for object localization.

This paper is organized as follows. Section 2 presents the state of the art on
clustering of high-dimensional data. In Section 3, we describe our parameterization
of the Gaussian mixture model. Section 4 presents our clustering method,i.e. the
estimation of the parameters and of the intrinsic dimensions. Experimental results
for our clustering method are given in Section 5.

2 Related work on high-dimensional clustering

Many methods use global dimensionality reduction and then apply a standard clus-
tering method. Dimension reduction techniques are either based onfeature extraction
or feature selection. Feature extraction builds new variables which carry a large part
of the global information. The most known method is Principal Component Anal-
ysis (PCA) which is a linear technique. Recently, many non-linear methods have
been proposed, such as Kernel PCA and non-linear PCA. In contrast, feature selec-
tion finds an appropriate subset of the original variables torepresent the data. Global
dimension reduction is often advantageous in terms of performance, but loses in-
formation which could be discriminant,i.e. clusters are often hidden in different
subspaces of the original feature space and a global approach cannot capture this. It
is also possible to use a parsimonious model [7] which reduces the number of pa-
rameters to estimate. It is for example possible to fix some parameters to be common
between classes. These methods do not solve the problem of high dimensionality
because clusters are usually hidden in different subspacesand many dimensions are
irrelevant. Recent methods determine the subspaces for each cluster. Many subspace
clustering methods use heuristic search techniques to find the subspaces. They are
usually based on grid search methods and find dense clusterable subspaces [8]. The
approach "mixtures of Probabilistic Principal Component Analyzers" [10] proposes
a latent variable model and derives an EM based method to cluster high-dimensional
data. Bocciet al. [1] propose a similar method to cluster dissimilarity data.In this
paper, we introduce an unified approach for class-specific subspace clustering which
includes these two methods and allows additional regularizations.

3 Gaussian mixture models for high-dimensional data

Clustering divides a given dataset{x1, ..., xn} of n data points intok homoge-
neous groups. Popular clustering techniques use Gaussian Mixture Models (GMM),
which assume that each class is represented by a Gaussian probability density. Data
{x1, ..., xn} ∈ R

p are then modeled with the densityf(x, θ) =
∑k

i=1 πiφ(x, θi),
whereφ is a multi-variate normal density with parameterθi = {µi, Σi} andπi are
mixing proportions. This model estimates full covariance matrices and therefore the
number of parameters is very large in high dimensions. However, due to theempty
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Fig. 1. The class-specific subspaceEi.

spacephenomenon we can assume that high-dimensional data live insubspaces with
a dimensionality lower than the dimensionality of the original space. We therefore
propose to work in low-dimensional class-specific subspaces in order to adapt classi-
fication to high-dimensional data and to limit the number of parameters to estimate.

3.1 The family of Gaussian mixture models

We remind that class conditional densities are GaussianN (µi, Σi) with meansµi

and covariance matricesΣi, i = 1, ..., k. Let Qi be the orthogonal matrix of eigen-
vectors ofΣi, then∆i = Qt

i Σi Qi is a diagonal matrix containing the eigenvalues
of Σi. We further assume that∆i is divided into two blocks:

∆i =
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whereaij > bi, ∀j = 1, ..., di. The class specific subspaceEi is generated by the
di first eigenvectors corresponding to the eigenvaluesaij with µi ∈ Ei. Outside this

subspace, the variance is modeled by the single parameterbi. LetPi(x) = Q̃iQ̃i

t
(x−

µi)+µi be the projection ofx onEi, whereQ̃i is made of thedi first columns ofQi

supplemented by zeros. Figure 1 summarizes these notations.
The mixture model presented above will be in the following referred to by

[aijbiQidi]. By fixing some parameters to be common within or between classes,
we obtain a family of models which correspond to different regularizations. For ex-
ample, if we fix the firstdi eigenvalues to be common within each class, we obtain
the more restricted model[aibiQidi]. The model[aibiQidi] is often robust and gives
satisfying results,i.e. the assumption that each matrix∆i has only two different
eigenvalues is in many cases an efficient way to regularize the estimation of∆i. In
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this paper, we focus on the models[aijbiQidi], [aijbQidi], [aibiQidi], [aibQidi] and
[abQidi].

3.2 The decision rule

Classification assigns an observationx ∈ R
p with unknown class membership to

one ofk classesC1, ..., Ck knowna priori. The optimal decision rule, calledBayes
decision rule, affects the observationx to the class which has themaximumpos-
terior probabilityP (x ∈ Ci|x) = πiφ(x, θi)/

∑k

l=1 πlφ(x, θl). Maximizing the
posterior probability is equivalent to minimizing−2 log(πi φ(x, θi)). For the model
[aijbiQidi], this results in the decision ruleδ+ which assignsx to the class minimiz-
ing the following cost functionKi(x):

Ki(x) = ‖µi−Pi(x)‖2
Λi

+
1

bi

‖x−Pi(x)‖2+

di
∑

j=1

log(aij)+(p−di) log(bi)−2 log(πi),

where‖.‖Λi
is the Mahalanobis distance associated with the matrixΛi = Q̃i∆iQ̃i

t
.

The posterior probability can therefore be rewritten as follows: P (x ∈ Ci|x) =

1/
∑k

l=1 exp
(

1
2 (Ki(x) − Kl(x))

)

. It measures the probability thatx belongs toCi

and allows to identify dubiously classified points.
We can observe that this new decision rule is mainly based on two distances: the

distance between the projection ofx onEi and the mean of the class; and the distance
between the observation and the subspaceEi. This rule assigns a new observation to
the class for which it is close to the subspace and for which its projection on the class
subspace is close to the mean of the class. If we consider the model [aibiQidi], the
variancesai andbi balance the importance of both distances. For example, if the data
are very noisy,i.e. bi is large, it is natural to balance the distance‖x − Pi(x)‖2 by
1/bi in order to take into account the large variance inE

⊥

i .
Remark that the decision ruleδ+ of our models uses only the projection onEi

and we only have to estimate adi-dimensional subspace. Thus, our models are signif-
icantly more parsimonious than the general GMM. For example, if we consider 100-
dimensional data, made of 4 classes and with common intrinsic dimensionsdi equal
to 10, the model[aibiQidi] requires the estimation of 4 015 parameters whereas the
full Gaussian mixture model estimates 20 303 parameters.

4 High Dimensional Data Clustering

In this section we derive the EM-based clustering frameworkfor the model[aijbiQidi]
and its sub-models. The new clustering approach is in the following referred to by
High-Dimensional Data Clustering (HDDC). By lack of space,we do not present
proofs of the following results which can be found in [2].

4.1 The clustering method HDDC

Unsupervised classification organizes data in homogeneousgroups using only the
observed values of thep explanatory variables. Usually, the parameters are estimated
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by the EM algorithm which repeats iteratively E and M steps. If we use the param-
eterization presented in the previous section, the EM algorithm for estimating the
parametersθ = {πi, µi, Σi, aij , bi, Qi, di}, can be written as follows:
– E step: this step computes at the iterationq the conditional posterior probabilities
t
(q)
ij = P (xj ∈ C

(q)
i |xj) according to the relation:

t
(q)
ij = 1/

k
∑

l=1

exp

(

1

2
(K

(q−1)
i (xj) − K

(q−1)
l (xj))

)

, (1)

whereKi is defined in Paragraph 3.2.
– M step: this step maximizes at the iterationq the conditional likelihood. Propor-
tions, means and covariance matrices of the mixture are estimated by:

π̂
(q)
i =

n
(q)
i

n
, µ̂

(q)
i =

1

n
(q)
i

n
∑

j=1

t
(q)
ij xj , n

(q)
i =

n
∑

j=1

t
(q)
ij . (2)

Σ̂
(q)
i =

1

n
(q)
i

n
∑

j=1

t
(q)
ji (xj − µ̂

(q)
i )(xj − µ̂

(q)
i )t. (3)

The estimation of HDDC parameters is detailed in the following subsection.

4.2 Estimation of HDDC parameters

Assuming for the moment that parametersdi are known and omitting the indexq of
the iteration for the sake of simplicity, we obtain the following closed form estimators
for the parameters of our models:
– SubspaceEi: thedi first columns ofQi are estimated by the eigenvectors associated
with thedi largest eigenvaluesλij of Σ̂i.
– Model [aijbiQidi]: the estimators ofaij are thedi largest eigenvaluesλij of Σ̂i

and the estimator ofbi is the mean of the(p−di) smallest eigenvalues of̂Σi and can
be written as follows:

b̂i =
1

(p − di)



Tr(Σ̂i) −
di

∑

j=1

λij



 . (4)

– Model[aibiQidi]: the estimator ofbi is given by (4) and the estimator ofai is the
mean of thedi largest eigenvalues of̂Σi:

âi =
1

di

di
∑

j=1

λij , (5)

– Model[aibQidi]: the estimator ofai is given by (5) and the estimator ofb is:

b̂ =
1

(np −
∑k

i=1 nidi)



n Tr(Ŵ ) −
k

∑

i=1

ni

di
∑

j=1

λij



 , (6)
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whereŴ =
∑k

i=1 π̂iΣ̂i.

– Model[abQidi]: the estimator ofb is given by (6) and the estimator ofa is:

â =
1

∑k

i=1 nidi

k
∑

i=1

ni

di
∑

j=1

λij . (7)

4.3 Intrinsic dimension estimation

We also have to estimate the intrinsic dimensions of each subclass. This is a difficult
problem with no unique technique to use. Our approach is based on the eigenvalues
of the class conditional covariance matrix̂Σi of the classCi. The jth eigenvalue
of Σ̂i corresponds to the fraction of the full variance carried by thejth eigenvector
of Σ̂i. We estimate the class specific dimensiondi, i = 1, ..., k, with the empirical
method scree-test of Cattell [3] which analyzes the differences between eigenvalues
in order to find a break in the scree. The selected dimension isthe one for which the
subsequent differences are smaller than a threshold. In ourexperiments, the threshold
is chosen by cross-validation. We also compared to the probabilistic criterion BIC [9]
which gave very similar results.

5 Experimental results

In this section, we use our clustering method HDDC to recognize and locate ob-
jects in natural images. Object category recognition is oneof the most challenging
problems in computer vision. Recent methods use local imagedescriptors which
are robust to occlusions, clutters and geometric transformations. Many of these ap-
proaches form clusters of local descriptors as an initial step; in most cases clustering
is achieved with k-means, diagonal or spherical GMM and EM estimation – with
or without PCA to reduce the dimension. Dorko and Schmid [6] select discriminant
clusters based on the likelihood ratio and use the most discriminative ones for recog-
nition. Bag-of-keypoint methods [11] represent an image bya histogram of cluster
labels and learn a Support Vector Machine classifier.

5.1 Protocol and data

We use an approach similar to Dorko and Schmid [6]. Local descriptors of dimen-
sion 128 are extracted from the training images (see [6] for details)and then are
organized intok groups by a clustering method (k = 200 in our experiments). We
then compute the discriminative capacity of the classCi for a given object categoryO
through the posterior probabilityRi = P (Ci ∈ O|Ci). This probability is estimated

by Ri =
[

(Ψ tΨ)
−1

Ψ tΦ
]

i
, whereΦj = P (xj ∈ O|xj) andΨjl = P (xj ∈ Cl|xj).

Learning can be either supervised or weakly supervised. In the supervised frame-
work, the objects are segmented using bounding boxes and only the descriptors lo-
cated inside the bounding boxes are labeled as positive in the learning step. In the
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HDDC [∗ ∗ Qidi] GMM Pascal
Learning [aijbi] [aijb] [aibi] [aib] PCA+diag.DiagonalSphericalBest of [4]

Supervised 0.172 0.181 0.183 0.175 0.177 0.161 0.150 0.112
Weakly-sup. 0.145 0.147 0.142 0.148 0.120 0.110 0.106 /

Table 1. Object localization on the databasePascal test2: mean of the average precision on
the four object categories. Best results are highlighted.

weakly-supervised scenario, the object are not segmented and all descriptors from
images containing the object are labeled as positive. Note that in this case many de-
scriptors from the background are labeled as positive. In both cases, we consider that
P (xj ∈ O|xj) = 1 if xj is positive andP (xj ∈ O|xj) = 0 otherwise. For each de-
scriptor of a test image, the probability that this point belongs to the objectO is then
given byP (xj ∈ O|xj) =

∑k

i=1 RiP (xj ∈ Ci|xj) where the posterior probability
P (xj ∈ Ci|xj) is obtained by the decision rule associated to the clustering method
(see Paragraph 3.2 for HDDC).

We compare the HDDC clustering method to the following classical clustering
methods: diagonal Gaussian mixture model, spherical Gaussian mixture model, and
data reduction with PCA combined with a diagonal Gaussian mixture model. The
diagonal GMM has a covariance matrix defined byΣi = diag(σi1, ..., σip) and the
spherical GMM is characterized byΣi = σiId. For all the models the parameters
were estimated via the EM algorithm. The EM estimation used the same initialization
based on k-means for both HDDC and classical methods.

The object category database used in our experiments is thePascaldataset [4]
which contains four categories: motorbikes, bicycles, people and cars. There are 684
training images and two test sets:test1andtest2. We evaluate our method on the set
test2, which is the most difficult of the two test sets and contains 956 images. There
are on average250 descriptors per image. From a computational point of view, the
localization step is very fast. For the learning step, computing time mainly depends
of the number of groupsk and is equal on average to 2 hours on a recent computer.
To locate an object in a test image, we compute for each descriptor the probability
to belong to the object. We then predict the bounding box based on the arithmetic
mean and the standard deviation of descriptors. In order to compare our results with
those of the Pascal Challenge [4], we used its evaluation criterion "average preci-
sion" which is the area under the precision-recall curve computed for the predicted
bounding boxes (see [4] for further details).

5.2 Object localization results

Table 1 presents localization results for the datasetPascal test2with supervised
and weakly-supervised training. First of all, we observe that HDDC performs bet-
ter than standard GMM within the probabilistic framework described in Section 5.1
and particularly in the weakly-supervised framework. Thisindicates that our cluster-
ing method identifies relevant clusters for each object category. In addition, HDDC
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(a) car (b) motorbike (c) bicycle
Fig. 2. Object localization on on the databasePascal test2: predicted bounding boxes with
HDDC are in red and true bounding boxes are in yellow.

provides better localization results than the state of the art methods reported in the
Pascal Challenge [4]. Note that the difference between the results obtained in the
supervised and in the weakly-supervised framework is not very high. This means
that HDDC efficiently identifies discriminative clusters ofeach object category even
with weak supervision. Weakly-supervised results are promising as they avoid time
consuming manual annotation. Figure 2 shows examples of object localization on
test images with the model[aibiQidi] of HDDC and supervised training.
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