1,512 research outputs found

    Strong lensing in the MareNostrum Universe II: scaling relations and optical depths

    Full text link
    The strong lensing events that are observed in compact clusters of galaxies can, both statistically and individually, return important clues about the structural properties of the most massive structures in the Universe. Substantial work is ongoing in order to understand the degree of similarity between the lensing cluster population and the population of clusters as a whole, with members of the former being likely more massive, compact, and substructured than members of the latter. In this work we exploit synthetic clusters extracted from the {\sc MareNostrum Universe} cosmological simulation in order to estimate the correlation between the strong lensing efficiency and other bulk properties of lensing clusters, such as the virial mass and the bolometric X-ray luminosity. We found that a positive correlation exist between all these quantities, with the substantial scatter being smaller for the luminosity-cross section relation. We additionally used the relation between the lensing efficiency and the virial mass in order to construct a synthetic optical depth that agrees well with the true one, while being extremely faster to be evaluated. We finally estimated what fraction of the total giant arc abundance is recovered when galaxy clusters are selected according to their dynamical activity or their X-ray luminosity. Our results show that there is a high probability for high-redshift strong lensing clusters to be substantially far away from dynamical equilibrium, and that 3040%30-40\% of the total amount of giant arcs are lost if looking only at very X-ray luminous objects.Comment: 15 pages, 10 figures. Accepted by A&

    Comparison of an X-ray selected sample of massive lensing clusters with the MareNostrum Universe LCDM simulation

    Full text link
    A long-standing problem of strong lensing by galaxy clusters regards the observed high rate of giant gravitational arcs as compared to the predictions in the framework of the "standard" cosmological model. Recently, few other inconsistencies between theoretical expectations and observations have been claimed which regard the large size of the Einstein rings and the high concentrations of few clusters with strong lensing features. All of these problems consistently indicate that observed galaxy clusters may be gravitational lenses stronger than expected. We use clusters extracted from the MareNostrum Universe to build up mock catalogs of galaxy clusters selected through their X-ray flux. We use these objects to estimate the probability distributions of lensing cross sections, Einstein rings, and concentrations for the sample of 12 MACS clusters at z>0.5z>0.5 presented in Ebeling et al. (2007) and discussed in Zitrin et al. (2010). We find that simulated clusters produce 50\sim 50% less arcs than observed clusters do. The medians of the distributions of the Einstein ring sizes differ by 25\sim 25% between simulations and observations. We estimate that, due to cluster triaxiality and orientation biases affecting the lenses with the largest cross sections, the concentrations of the individual MACS clusters inferred from the lensing analysis should be up to a factor of 2\sim 2 larger than expected from the Λ\LambdaCDM model. The arc statistics, the Einstein ring, and the concentration problems in strong lensing clusters are mitigated but not solved on the basis of our analysis. Nevertheless, due to the lack of redshifts for most of the multiple image systems used for modeling the MACS clusters, the results of this work will need to be verified with additional data. The upcoming CLASH program will provide an ideal sample for extending our comparison (abridged).Comment: 11 pages, 9 figures, accepted for publication on A&

    Age-related differences in pointing accuracy in familiar and unfamiliar environments

    Get PDF
    This study aimed to investigate age-related differences in spatial mental representations of familiar and unfamiliar places. Nineteen young adults (aged 18\u201323) and 19 older adults (aged 60\u201374), all living in the same Italian town, completed a set of visuospatial measures and then pointed in the direction of familiar landmarks in their town and in the direction of landmarks in an unknown environment studied on a map. Results showed that older adults were less accurate in the visuospatial tasks and in pointing at landmarks in an unfamiliar environment, but performed as well as the young adults when pointing to familiar places. Pointing performance correlated with visuospatial tests accuracy in both familiar and unfamiliar environments, while only pointing in an unknown environment correlated with visuospatial working memory (VSWM). The spatial representation of well-known places seems to be well preserved in older adults (just as well as in young adults), while it declines for unfamiliar environments. Spatial abilities sustain the mental representations of both familiar and unfamiliar environments, while the support of VSWM resources is only needed for the latter

    Strong lensing in the MareNostrum Universe: biases in the cluster lens population

    Full text link
    Strong lensing is one of the most direct probes of the mass distribution in the inner regions of galaxy clusters. It can be used to constrain the density profiles and to measure the mass of the lenses. Moreover, the abundance of strong lensing events can be used to constrain the structure formation and the cosmological parameters through the so-called "arc-statistics" approach. However, several issues related to the usage of strong lensing clusters in cosmological applications are still controversial, leading to the suspect that several biases may affect this very peculiar class of objects. With this study we aim at better understanding the properties of galaxy clusters which can potentially act as strong lenses. We do so by investigating the properties of a large sample of galaxy clusters extracted from the N-body/hydrodynamical simulation MareNostrum Universe. We explore the correlation between the cross section for lensing and many properties of clusters, like the mass, the three-dimensional and projected shapes, their concentrations, the X-ray luminosity and the dynamical activity. We find that the probability of strong alignments between the major axes of the lenses and the line of sight is a growing function of the lensing cross section. In projection, the strong lenses appear rounder within R200, but we find that their cores tend to be more elliptical as the lensing cross section increases. We also find that the cluster concentrations estimated from the projected density profiles tend to be biased high. The X-ray luminosity of strong lensing clusters is higher than that of normal lenses of similar mass and redshift. This is particular significant for the least massive lenses. Finally, we find that the strongest lenses generally exhibit an excess of kinetic energy within the virial radius, indicating that they are more dynamically active than usual clusters.Comment: 22 pages, 18 figures, accepted for publication on A&

    The strongest gravitational lenses: I. The statistical impact of cluster mergers

    Full text link
    For more than a decade now, it has been controversial whether or not the high rate of giant gravitational arcs and the largest observed Einstein radii are consistent with the standard cosmological model. Recent studies indicate that mergers provide an efficient mechanism to substantially increase the strong-lensing efficiency of individual clusters. Based on purely semi-analytic methods, we investigated the statistical impact of cluster mergers on the distribution of the largest Einstein radii and the optical depth for giant gravitational arcs of selected cluster samples. Analysing representative all-sky realizations of clusters at redshifts z < 1 and assuming a constant source redshift of z_s = 2.0, we find that mergers increase the number of Einstein radii above 10 arcsec (20 arcsec) by ~ 35 % (~ 55 %). Exploiting the tight correlation between Einstein radii and lensing cross sections, we infer that the optical depth for giant gravitational arcs with a length-to-width ratio > 7.5 of those clusters with Einstein radii above 10 arcsec (20 arcsec) increases by ~ 45 % (85 %). Our findings suggest that cluster mergers significantly influence in particular the statistical lensing properties of the strongest gravitational lenses. We conclude that semi-analytic studies must inevitably take these events into account before questioning the standard cosmological model on the basis of the largest observed Einstein radii and the statistics of giant gravitational arcs.Comment: 23 pages, 18 figures; accepted for publication in Astronomy and Astrophysics; v2: minor corrections (added clarifying comments; added Fig. 19) to match the accepted versio

    Selecting background galaxies in weak-lensing analysis of galaxy clusters

    Get PDF
    In this paper, we present a new method to select the faint, background galaxies used to derive the mass of galaxy clusters by weak lensing. The method is based on the simultaneous analysis of the shear signal, that should be consistent with zero for the foreground, unlensed galaxies, and of the colors of the galaxies: photometric data from the COSMic evOlution Survey are used to train the color selection. In order to validate this methodology, we test it against a set of state-of-the-art image simulations of mock galaxy clusters in different redshift [0.230.450.23-0.45] and mass [0.51.55×1015M0.5-1.55\times10^{15}M_\odot] ranges, mimicking medium-deep multicolor imaging observations (e.g. SUBARU, LBT). The performance of our method in terms of contamination by unlensed sources is comparable to a selection based on photometric redshifts, which however requires a good spectral coverage and is thus much more observationally demanding. The application of our method to simulations gives an average ratio between estimated and true masses of 0.98±0.09\sim 0.98 \pm 0.09. As a further test, we finally apply our method to real data, and compare our results with other weak lensing mass estimates in the literature: for this purpose we choose the cluster Abell 2219 (z=0.228z=0.228), for which multi-band (BVRi) data are publicly available.Comment: MNRAS, Accepted 2016 February 2

    Effects of early dark energy on strong cluster lensing

    Full text link
    We use the semi-analytic method developed by Fedeli et al. for computing strong-lensing optical depths to study the statistics of gravitational arcs in four dark-energy cosmologies. Specifically, we focus on models with early dark energy and compare them to more conventional models. Merger trees are constructed for the cluster population because strong cluster lensing is amplified by factors of two to three during mergers. We find that the optical depth for gravitational arcs in the early dark-energy models is increased by up to a factor of about 3 compared to the other models because of the modified dynamics of cluster formation. In particular, the probability for gravitational arcs in high-redshift clusters is considerably increased, which may offer an explanation for the unexpectedly high lensing efficiency of distant clusters.Comment: 10 pages, 9 figures, accepted for publication on A&

    Effects of the halo concentration distribution on strong-lensing optical depth and X-ray emission

    Full text link
    We use simulated merger trees of galaxy-cluster halos to study the effect of the halo concentration distribution on strong lensing and X-ray emission. Its log-normal shape typically found in simulations favors outliers with high concentration. Since, at fixed mass, more concentrated halos tend to be more efficient lenses, the scatter in the concentration increases the strong-lensing optical depth by 50\lesssim50%. Within cluster samples, mass and concentration have counteracting effects on strong lensing and X-ray emission because the concentration decreases for increasing mass. Selecting clusters by concentration thus has no effect on the lensing cross section. The most efficiently lensing and hottest clusters are typically the \textit{least} concentrated in samples with a broad mass range. Among cluster samples with a narrow mass range, however, the most strongly lensing and X-ray brightest clusters are typically 10% to 25% more concentrated.Comment: 12 pages, 10 figures. Version accepted by A&

    Does repetitive thinking mediate the relationship between self-compassion and competition anxiety in athletes?

    Get PDF
    Due to the promising effect of self-compassion interventions in sports, it was the main goal of this study to investigate, if two aspects of repetitive thinking, worry and rumination, mediate the possible relation of self-compassion on competition anxiety of women and men in different types of sport (team- vs. individual sport). Two hundred and ninety-three athletes participated, 127 were soccer players, 103 handball players, and 63 athletes practiced an individual sport. They completed four questionnaires of sport competition anxiety, rumination, worry, and self-compassion. The results showed that for both rumination and worry, women had higher values than men and individual athletes had higher values than athletes from team sport. Women had higher values in the negative scale of self-compassion compared to men, and individual athletes and handball players had lower values than soccer players. The result of a mediation analysis demonstrated that the relation between the negative scale of self-compassion and the somatic anxiety and concern aspect of competition anxiety was mediated by worry

    The influence of personality traits and facets on visuo-spatial task performance and self-assessed visuo-spatial inclinations in young and older adults.

    Get PDF
    Aims Personality traits are suggested to influence adults\u2019 cognitive performance, but little is known about their association with visuo-spatial competence, in terms of those visuo-spatial abilities and inclinations crucial to remaining autonomous, especially with aging. This study newly investigated whether, and to what extent, major traits and narrower facets of personality influence young and older adults\u2019 performance in the so-called objective visuo-spatial abilities (mental rotation and visuo-spatial working memory [VSWM]), and self-assessed visuo-spatial inclinations (pleasure and anxiety in exploring places). Method Seventy young adults (18\u201335 years old) and 70 older adults (65\u201375 years old) completed the Big-Five questionnaire, objective rotation and VSWM tasks, and spatial self-assessments on pleasure and anxiety in exploring places. Results Hierarchical regression models confirmed that age negatively predicted the variance in objective visuo-spatial tasks, but not in self-assessed visuo-spatial inclinations, while only the latter were slightly influenced by gender (in favor of men). Further, both objective visuospatial abilities (albeit modestly) and self-assessed visuo-spatial inclinations were predicted by higher Conscientiousness. The latter were also predicted by higher Emotional Stability. Finally, a better objective visuo-spatial performance was explained (again modestly) by lower Dynamism and Politeness, and higher Emotion Control, while higher Perseverance, Emotion Control and Cooperativeness explained a moderate part of the variance in the positive self-assessed visuo-spatial inclinations. Conclusions Our findings indicate that, beyond age and gender, some personality traits and facets predict self-assessed visuo-spatial inclinations to a larger extent than objective visuo-spatial performance. These results are discussed within the spatial cognition and aging framework
    corecore