2,290 research outputs found

    Impact of adversarial examples on deep learning models for biomedical image segmentation

    Get PDF
    Deep learning models, which are increasingly being used in the field of medical image analysis, come with a major security risk, namely, their vulnerability to adversarial examples. Adversarial examples are carefully crafted samples that force machine learning models to make mistakes during testing time. These malicious samples have been shown to be highly effective in misguiding classification tasks. However, research on the influence of adversarial examples on segmentation is significantly lacking. Given that a large portion of medical imaging problems are effectively segmentation problems, we analyze the impact of adversarial examples on deep learning-based image segmentation models. Specifically, we expose the vulnerability of these models to adversarial examples by proposing the Adaptive Segmentation Mask Attack (ASMA). This novel algorithm makes it possible to craft targeted adversarial examples that come with (1) high intersection-over-union rates between the target adversarial mask and the prediction and (2) with perturbation that is, for the most part, invisible to the bare eye. We lay out experimental and visual evidence by showing results obtained for the ISIC skin lesion segmentation challenge and the problem of glaucoma optic disc segmentation. An implementation of this algorithm and additional examples can be found at https://github.com/utkuozbulak/adaptive-segmentation-mask-attack

    Global surface-ocean pCO2 and sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme

    Get PDF
    A temporally and spatially resolved estimate of the global surface-ocean CO<sub>2</sub> partial pressure field and the sea–air CO<sub>2</sub> flux is presented, obtained by fitting a simple data-driven diagnostic model of ocean mixed-layer biogeochemistry to surface-ocean CO<sub>2</sub> partial pressure data from the SOCAT v1.5 database. Results include seasonal, interannual, and short-term (daily) variations. In most regions, estimated seasonality is well constrained from the data, and compares well to the widely used monthly climatology by Takahashi et al. (2009). Comparison to independent data tentatively supports the slightly higher seasonal variations in our estimates in some areas. We also fitted the diagnostic model to atmospheric CO<sub>2</sub> data. The results of this are less robust, but in those areas where atmospheric signals are not strongly influenced by land flux variability, their seasonality is nevertheless consistent with the results based on surface-ocean data. From a comparison with an independent seasonal climatology of surface-ocean nutrient concentration, the diagnostic model is shown to capture relevant surface-ocean biogeochemical processes reasonably well. Estimated interannual variations will be presented and discussed in a companion paper

    How does the terrestrial carbon exchange respond to inter-annual climatic variations? : A quantification based on atmospheric CO2 data

    Get PDF
    The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as "inter-annual climate sensitivity". We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical interannual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.Peer reviewe

    On observational and modelling strategies targeted at regional carbon exchange over continents

    Get PDF
    Estimating carbon exchange at regional scales is paramount to understanding feedbacks between climate and the carbon cycle, but also to verifying climate change mitigation such as emission reductions and strategies compensating for emissions such as carbon sequestration. This paper discusses evidence for a number of important shortcomings of current generation modelling frameworks designed to provide regional scale budgets from atmospheric observations. Current top-down and bottom-up approaches targeted at deriving consistent regional scale carbon exchange estimates for biospheric and anthropogenic sources and sinks are hampered by a number of issues: we show that top-down constraints using point measurements made from tall towers, although sensitive to larger spatial scales, are however influenced by local areas much more strongly than previously thought. On the other hand, classical bottom-up approaches using process information collected at the local scale, such as from eddy covariance data, need up-scaling and validation on larger scales. We therefore argue for a combination of both approaches, implicitly providing the important local scale information for the top-down constraint, and providing the atmospheric constraint for up-scaling of flux measurements. Combining these data streams necessitates quantifying their respective representation errors, which are discussed. The impact of these findings on future network design is highlighted, and some recommendations are given

    History of El Nino impacts on the global carbon cycle 1957-2017 : a quantification from atmospheric CO2 data

    Get PDF
    Interannual variations in the large-scale net ecosystem exchange (NEE) of CO2 between the terrestrial biosphere and the atmosphere were estimated for 1957-2017 from sustained measurements of atmospheric CO2 mixing ratios. As the observations are sparse in the early decades, available records were combined into a 'quasi-homogeneous' dataset based on similarity in their signals, to minimize spurious variations from beginning or ending data records. During El Nino events, CO2 is anomalously released from the tropical band, and a few months later also in the northern extratropical band. This behaviour can approximately be represented by a linear relationship of the NEE anomalies and local air temperature anomalies, with sensitivity coefficients depending on geographical location and season. The apparent climate sensitivity of global total NEE against variations in pan-tropically averaged annual air temperature slowly changed over time during the 1957-2017 period, first increasing (though less strongly than in previous studies) but then decreasing again. However, only part of this change can be attributed to actual changes in local physiological or ecosystem processes, the rest probably arising from shifts in the geographical area of dominating temperature variations. This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.Peer reviewe

    Can guided introspection help avoid rationalization of meat consumption? Mixed-methods results of a pilot experimental study

    Get PDF
    The need for reducing meat consumption in affluent countries is increasingly recognized as crucial to minimizing carbon footprint. However, confronting individuals with rational arguments can prompt emotional discomfort, which is often relieved by engaging in rationalization processes stabilizing current consumption patterns. Mindfulness research suggests that making people aware of their emotional reactions through introspection can reduce these rationalization processes. In this mixed-method pilot experimental study, we inquired whether a single guided introspection, inspired by the micro-phenomenological interview technique, can alter individuals' experience of and abilities to deal with cognitive dissonance. Furthermore, we asked if such an intervention can stimulate attitude or intention changes concerning meat consumption. After inducing cognitive dissonance by exposing participants to pictures of the slaughter of a cow, the intervention group (n = 36) participated in the guided introspection, while the control group (n = 39) played solitaire. Self-report questionnaire measures of emotional discomfort, rationalization strategies, and attitudes towards meat consumption were administered before and after the intervention. Also, open-ended responses to participants’ experience of the study were analyzed. Quantitative results show significantly lower negative attitudes toward reducing meat consumption in the intervention group compared to the control group (partial 2 = 0.107). Qualitative results indicate that these participants are more aware of negative emotions while engaging less in rationalization strategies. We conclude that our study indicates some potential for guided introspection to affect dissonance resolution and provide suggestions for future research

    Cluster analysis of multiplex ligation-dependent probe amplification data in choroidal melanoma.

    Get PDF
    PurposeTo determine underlying correlations in multiplex ligation-dependent probe amplification (MLPA) data and their significance regarding survival following treatment of choroidal melanoma (CM).MethodsMLPA data were available for 31 loci across four chromosomes (1p, 3, 6, and 8) in tumor material obtained from 602 patients with CM treated at the Liverpool Ocular Oncology Center (LOOC) between 1993 and 2012. Data representing chromosomes 3 and 8q were analyzed in depth since their association with CM patient survival is well-known. Unsupervised k-means cluster analysis was performed to detect latent structure in the data set. Principal component analysis (PCA) was also performed to determine the intrinsic dimensionality of the data. Survival analyses of the identified clusters were performed using Kaplan-Meier (KM) and log-rank statistical tests. Correlation with largest basal tumor diameter (LTD) was investigated.ResultsChromosome 3: A two-cluster (bimodal) solution was found in chromosome 3, characterized by centroids at unilaterally normal probe values and unilateral deletion. There was a large, significant difference in the survival characteristics of the two clusters (log-rank, p&lt;0.001; 5-year survival: 80% versus 40%). Both clusters had a broad distribution in LTD, although larger tumors were characteristically in the poorer outcome group (Mann-Whitney, p&lt;0.001). Threshold values of 0.85 for deletion and 1.15 for gain optimized the classification of the clusters. PCA showed that the first principal component (PC1) contained more than 80% of the data set variance and all of the bimodality, with uniform coefficients (0.28±0.03). Chromosome 8q: No clusters were found in chromosome 8q. Using a conventional threshold-based definition of 8q gain, and in conjunction with the chromosome 3 clusters, three prognostic groups were identified: chromosomes 3 and 8q both normal, either chromosome 3 or 8q abnormal, and both chromosomes 3 and 8q abnormal. KM analysis showed 5-year survival figures of approximately 97%, 80%, and 30% for these prognostic groups, respectively (log-rank, p&lt;0.001). All MLPA probes within both chromosomes were significantly correlated with each other (Spearman, p&lt;0.001).ConclusionsWithin chromosome 3, the strong correlation between the MLPA variables and the uniform coefficients from the PCA indicates a lack of evidence for a signature gene that might account for the bimodality we observed. We hypothesize that the two clusters we found correspond to binary underlying states of complete monosomy or disomy 3 and that these states are sampled by the complete ensemble of probes. Consequently, we would expect a similar pattern to emerge in higher-resolution MLPA data sets. LTD may be a significant confounding factor. Considering chromosome 8q, we found that chromosome 3 cluster membership and 8q gain as traditionally defined have an indistinguishable impact on patient outcome

    The European carbon cycle response to heat and drought as seen from atmospheric CO(2)data for 1999-2018

    Get PDF
    In 2018, central and northern parts of Europe experienced heat and drought conditions over many months from spring to autumn, strongly affecting both natural ecosystems and crops. Besides their impact on nature and society, events like this can be used to study the impact of climate variations on the terrestrial carbon cycle, which is an important determinant of the future climate trajectory. Here, variations in the regional net ecosystem exchange (NEE) of CO(2)between terrestrial ecosystems and the atmosphere were quantified from measurements of atmospheric CO(2)mole fractions. Over Europe, several observational records have been maintained since at least 1999, giving us the opportunity to assess the 2018 anomaly in the context of at least two decades of variations, including the strong climate anomaly in 2003. In addition to an atmospheric inversion with temporally explicitly estimated anomalies, we use an inversion based on empirical statistical relations between anomalies in the local NEE and anomalies in local climate conditions. For our analysis period 1999-2018, we find that higher-than-usual NEE in hot and dry summers may tend to arise in Central Europe from enhanced ecosystem respiration due to the elevated temperatures, and in Southern Europe from reduced photosynthesis due to the reduced water availability. Despite concerns in the literature, the level of agreement between regression-based NEE anomalies and temporally explicitly estimated anomalies indicates that the atmospheric CO(2)measurements from the relatively dense European station network do provide information about the year-to-year variations of Europe's carbon sources and sinks, at least in summer. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.Peer reviewe

    COCAP : a carbon dioxide analyser for small unmanned aircraft systems

    Get PDF
    Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 mu mol mol(-1) or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.Peer reviewe
    corecore