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Abstract. A temporally and spatially resolved estimate of 1 Introduction

the global surface-ocean GQ@artial pressure field and the

sea—air CO flux is presented, obtained by fitting a simple The oceans are considered the dominant player in the
data-driven diagnostic model of ocean mixed-layer biogeo-global carbon cycle on long timescales, e.g. in the glacial—
chemistry to surface-ocean GQartial pressure data from interglacial cycles (e.gSigman and Boyle2000. On a

the SOCAT v1.5 database. Results include seasonal, interamaulti-millennial timescale, the oceans will be the sink for
nual, and short-term (daily) variations. In most regions, es-80-95 % of the anthropogenic G@missions, and 70-80 %
timated seasonality is well constrained from the data, and®n a timescale of several hundred yedwscher et al, 1997).
compares well to the widely used monthly climatology by Currently, the oceans take up about 25% of the emissions
Takahashi et a{2009. Comparison to independent data ten- (Sarmiento et al.2010. Concerns exist, however, that the
tatively supports the slightly higher seasonal variations in oursink efficiency may decrease in the coming decades as a
estimates in some areas. We also fitted the diagnostic mod&onsequence of anthropogenic climate change, as suggested
to atmospheric C®data. The results of this are less robust, by model projections (e.gSarmiento and Le G, 1996

but in those areas where atmospheric signals are not stronglifatear and HirstL999 Joos et al.1999 and tentatively con-
influenced by land flux variability, their seasonality is nev- firmed by data analysis (e.g. Le @& et al., 2007, 2010). As
ertheless consistent with the results based on surface-oced@nprerequisite to understanding the involved processes, one
data. From a comparison with an independent seasonal clipeeds to quantify sea—air GQ@luxes, their variability, and
matology of surface-ocean nutrient concentration, the diagtheir response to forcing.

nostic model is shown to capture relevant surface-ocean bio- Currently, two data streams are used to estimate the vari-
geochemical processes reasonably well. Estimated interar@bility of sea—air CQ@fluxes:

nual variations will be presented and discussed in a compan-

ion paper. — Based on measurements of the Lfartial pressure

(p©©2) of surface water, the sea—air g@ux is cal-

culated through a gas exchange parameterization. As
pC9% measurements only exist at discrete locations
and ship tracks, spatial and temporal interpolation is
needed. The following interpolation methods have been
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194 C. Rddenbeck et al.: Global surface-oceap©©2 and sea—air CQ flux variability

proposed: (1) statistical interpolation combined with an In view of the above-mentioned problem of the atmospheric
advection—diffusion equationTékahashi et al.2009; CQO, inversions, most of these studies use the sea—air flux cli-
(2) purely statistical interpolation with error quantifica- matology byTakahashi et ali2009 (or earlier versions) as
tion (Jones et al.2012h; (3) multi-linear regressions a Bayesian prior (in some cases, the long-term fluxes from
betweerp©©2 and ocean state variables (eRPgrk et al, ocean-interior inversions are used in the prior as well, e.qg.
201Q Chen et al. 2011); (4) neural networks learn- Rodenbeck et al(2003, or formalized as joint inversion

ing the relationship betweep®® and oceanic state by Jacobson et al(2007). Out of this context, the data-
variables available from remote sensing platforms andbased sea—air COfluxes presented here have been devel-
ocean reanalysis projects (elgfévre et al.2005 Tel- oped aiming to (1) provide not only a monthly seasonal cy-
szewski et al.2009; (5) assimilation of thepy®©2 data  cle but variability also on short-term (daily) and interannual
into a process model of ocean biogeochemistglgala  timescales, (2) use an assimilation scheme that can easily and
and Maksyutoy201Q While et al, 2012. These meth-  self-consistently compare or even combine the observational
ods are complementary in certain aspects: the more stanformation of atmospheric and surface-ocean data, and (3)
tistical methods are dominated by the data themselvesise a framework that can be extended to also incorporate con-
but are strongly affected by spatial and temporal gapsstraints from other tracers, such as oxygen.

while the more complex methods more easily spread The presented results are based on the newly available Sur-
the information but are dependent on driver data setdace Ocean C@®Atlas (SOCAT) database (version 1.5) of
or even on model formulations. CO, fugacity measurement®feil et al, 2012 http://www.

socat.infoj. We describe the estimation method and test its
— The CQ exchange betw_egn the Earth surface and Fhe atf:)erformance, also using independent data. As a first step of
mosphere can be quantified based on atmospheric CO

o . analysis, this study mainly focuses on the mean seasonal cy-
mixing ratio meaSl_Jrements (e._@onwgy etal. 1999 cle, because on this timescale (1) we can compare to the
by dthe atmospheric transport inversion (el>{:pwsar1|1 widely used monthlyp©®2 climatology by Takahashi et al.
an Ent.!ng 1988 Rayner et al.1999 Bousquet et al. (2009, (2) we can investigate mutual consistency between
2000 Roden_b eck et a,l_.2003 Baker et al. 2009 (see the surface-oceap®©2 constraint and that by atmospheric
Sec_t.2.1_). This estimation does not involve any param- CO;, data as the signal/noise ratio is large, and (3) we can
efce-r|zat|on of gas exchgnge. Howgver, ocean fluxes Alfest the plausibility of our process representations invoking
difficult to detect by this method in most parts of the a seasonal surface-ocean phosphateR@natology. Esti-
globe, because their imprint on the atmospheric mixing )

. ; mated interannual variations of the sea—air,Gidx are pre-
ratio records is small compared to that of the much more 2 P

variable land fluxes: Even if ocean-internal processesZ?ntZ%dl;)nd discussed in a companion papédéRbeck et

(biology, transport) cause mixed-layer carbon sources
and sinks of comparable variability as the land bio-
sphere, the resulting sea—air £€xchange is much less

. L= 2 Method
variable and smoothed out in time because the carbon-
ate chemistry of seawater slows the equilibration rate of
dissolved CQ with the atmosphere. In addition, the re-

sponses to warming/cooling partially counteract the ef-|, 5 ¢jassical atmospheric inversion, a spatio-temporal field
fects of ocean-internal sources/sinks. A further problem ¢\ tace-to-atmosphere carbon fluxes is estimated such that
of atmospheric |nverS|.ons'based.0n data.fror'n a discretgg corresponding mixing ratio field — as simulated by an at-
set of measurement sites is that information is only PrO-mospheric tracer transport model — matches as closely as
vided on scales comparable to or larger than the distancgsgjhle a set of mixing ratio observations. The match is
between the sites or the sampling frequency, while Vari'gauged by a quadratic cost function to be minimized (Ap-

2.1 Concept — overview

ability exists also on smaller scales. pendixA2).
A further data-based method to estimate sea—ais fiQes Here we extend the inversion framework by not only con-
uses ocean-interior carbon data in inverse calculations oidering the process of atmospheric transport but also pro-
oceanic transporRloor et al, 2003 Mikaloff Fletcher etal, ~ cesses in the oceanic mixed layer: The atmospheric trans-

2006. This method is independent of parameterizations ofport model is supplemented by a chain of parameterizations
gas exchange as well. However, it only yields long-term sea-0f gas exchange, carbonate chemistry, and a carbon bud-
air CO, fluxes over large spatial regions, not its temporal or get equation, which determine the sea-to-air,@®change
high-resolution spatial variability. The long-term global sea— (fn(fgz) as a function of ocean-internal carbon sources and
air CO, flux has also been estimated from observed trendssinks (Fig.1). Then the inversion is not directly adjusting the

in atmospheric oxygenkeeling and Sher{z1992 as well  sea-to-air fluxes any more, but only indirectly through adjust-
as from*3C isotopic ratios in atmospheric GQCiais et al, ing the ocean-internal fluxes instead (F2gfrom left to mid-
1995. dle). This offers two advantages: (1) the equations describing
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Fig. 2. lllustration of the inverse procedure (three modi). Boxes
Fig. 1. Summary of the main quantities and process parameterizadenote the process parameterizations from Eigausally linking
tions involved in the diagnostic ocean mixed-layer model. Thick duantities from bottom to top. Double arrows symbolize the match-
boxes denote the process parameterizations given inSgaotach g between observed and modelled quantities, as gauged by a cost
expressing the quantity right above as a function of the Oluantityfunctlon J (Appendix A2). Thin arrows indicate the adjustments

right below. Quantities at the arrows on the left represent driver datePf the respective unknowns done to minimize the model-data mis-
entering the parameterizations. See Tabfer mathematical sym- match. Left: pure atmospheric transport inversion not used here but

bols, and Appendi1 for the equations and further explanation. ~ given for reference: the sea-air fluxgfs? are adjusted to match
atmospheric mixing ratios (terrestrial net ecosystem exchange is ad-
justed as well but omitted from this schematic for clarity). Middle:

the individual processes impose spatial and temporal strucin the case oATM , ocean-internal sources/sink§;© are adjusted

ture to the sea—air fluxes, based on the spatio-temporal infor'Stead of sea—air fluxes to match atmospherig @ixing ratios

mation from the driver data (sea-surface temperature (SST)292in net ecosystem exchange is further adjusted). Right: in the

wind speed, etc., Figl). (2) The explicit representation of case ofSFC, ocean-lntgrnal sources/sinks are adjusted Fo match the

. vol furth titi tabl surface-ocean Cgpartial pressure observations. Sea—air fluxes are

oceanic process_,es Involves further quantiies, r_]o anly S_eq'hen calculated from the estimated partial pressure field.

surface CQ partial pressure. Through cost function contri-

butions gauging the match of modelled and measpi€d,

these data can be used as an observational constraint replasgs-iS (Kalnay et al, 1996. The model fields are sampled at
ing the atmospheric data (Fig, right). In this mode of op- the location and time of the individual mixing ratio measure-

eration, atmospheric transport models and atmospheric datr"il1ents used. TM3 has performed well in intercomparisons of
are actually no longer used in the inverse calculation, but the

; . . S . State-of-the-art global tracer transport models (8tgphens
Bayesian framework, including a-priori spatial and temporal g P (Btgp

lati is still lied in th i the at et al, 2007 Law et al, 2008.
correations, Is stff applied In the same way as in the atmo- Solubility and gas exchang®iffusive sea-to-air gas ex-
spheric mode.

. . . change is proportional to the over-/undersaturation of @O
.The calculation is glo_bal over the time penqd 1985_2011’the surface ocean and to the piston velocity with the quadratic
Wlth a tempor'al resolutlon of 1daoy anq a horizontal resolu—Wind speed dependence byanninkhof (1992, scaled to
t|qn of approximately 2latitudex 5° longitude (TM3 model match the global average piston velocityNdegler(2009
grid). (AppendixAl.1).

Carbonate chemistryThe carbon species relevant for gas
exchange (C@) only account for a small part of the car-
All processes considered explicitly are given in Flgand bon relevant in the ocean-internal budget (dissolved inor-
summarized in the following. Details, including the equa- 9anic carbon, DIC). The link between G@bundance (ex-
tions used, are found in Appendix pressed in terms of partial pressqvg.oz) and DIC abun-

Atmospheric transportAtmospheric C@ mixing ratio  dance (in terms of its concentratiaf5'“) is determined
fields in response to surface-to-atmosphere fluxes are simBy chemical equilibria, which we assume to be attained in-
lated by the global off-line atmospheric transport model TM3 stantaneously. The non-linear dependencp%(f2 on Cr'%'c
(Heimann and Krner, 2003 with a spatial resolution of 4° has been linearized in standard wagaimiento and Gru-
lat. x 5° long. x 19 vertical levels. The model is driven by ber, 200§. The chemistry parameterization also contains a
6-h interannual meteorological fields derived from the Na-temperature-dependent factor, and contributions from sea-
tional Centers for Environmental Prediction (NCEP) reanal-sonal variations in alkalinity and salinity (Appendi..2).

2.2 Process parameterizations

WwWw.ocean-sci.net/9/193/2013/ Ocean Sci., 9, 1936 2013
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Mixed-layer carbon budgetChanges in the spatio- 3.1 Overview
temporal field of dissolved inorganic carbon in the ocean
mixed layer need to be balanced by the sum of fluxes (Ap-To illustrate the characteristics of the quantities and the tem-
pendixAl.3). As the sea-air flux itself depends on carbon poral scales involved in the scheme, Figshows time se-
concentration, this balance can be expressed as a linear firstes of key quantities (as of ru8FC, blue) at the exam-
order differential equation. Its solution gives DIC concen- ple pixel around Station M in the Norwegian Sea 165
tration CR'C as a function of the ocean-internal sinﬁgt'c 2°E). The ocean-internal sources/sinks (bottom panel) are
(representing the total effect of biological conversion andrelatively smooth, as the a-priori temporal correlations (Ap-
vertical/horizontal advection/diffusion on mixed-layer car- PendixA2.2) suppress fast variations. The mixed-layer DIC
bon concentration). An additional important item in the bud- concentration (panel above) responds to these ocean-internal
get is the re-entrainment during mixed-layer deepening offluxes and the emerging sea—air exchange. Being their tem-
carbon left behind previously during mixed-layer shoaling, Poral integral, the DIC concentration is slightly shifted in
which we represent as a “history flusfiis.. We further con-  phase with respect to the ocean-internal fluxes. In addition,

sider the influence of freshwater fluxes. the DIC concentration is rising in response to the atmo-
spheric CQ increase. The surface-ocean £fartial pres-
2.3 Main adjustable degrees of freedoms sure (3rd panel from bottom) shares the rise and the varia-

tions with the DIC concentration, but the seasonality is again
The ocean-internal carbon sources and siqfﬁ'c() at the  slightly shifted because of the temperature and alkalinity ef-
end of the described chain of process parameterizations ifects. Finally, the sea—air GOlux (top panel) is dominated
the basic unknown to be adjusted to match the surface-ocedpy the p©©2 variability; in addition, it shows high-frequency
p©92 or atmospheric C@data (next section). It is treated (daily) variability due to wind speed and solubility changes.
similarly to the unknown sea—air flux in the pure atmosphericFigure3 also illustrates the dampening effect of the carbon-
transport inversion (FigR), including Bayesian a-priori spa- ate chemistry on sea—air exchange, as the seasonal amplitude
tial and temporal correlations. The detailed specification andf the sea—air flux (top) is much lower than that of the ocean-

further explanations are found in Appendi®.2. interior flux (bottom).
The spatial resolution and domain of the calculation is il-
2.4 Data constraints — base runs lustrated by Fig4, showing the amplitude of the mean sea-

sonal cycle ofp©®2 for each pixel.

We will present results of two cases that differ in the data set
used as main constraint (Fig): 3.2 Data and model constraints

SFC. In the main case used to create the primary prod- _ o, ) ] o
uct of this study, the ocean part of the diagnostic scheme he estimategp™-2 and sea—air Coflux fields combine in-
is fit to surface pC data points from the SOCAT v1.5 formation from t_he .partlal pressure datg and from the pro-
database Rfeil et al, 2012 http:/www.socat.inf, Data  CESS parameterizations. To illustrate th|s., Ralso shows
pre-treatment and further details are given in TdbOCAT ~ the a-priori state (thin dashed grey) defined fi&l,cpri =
data cover about 6 million pixels/time steps globally within (AppendixA2.2, see bottom panel). The choigﬂ%ri =0
the calculation period (until 2007, see Supplement Figs. S7.3neans that, without data knowledge, it is equally likely to
and S7.4 for data distribution). have an internal source or an internal sink at any given lo-

ATM . As a comparison case used to assess the consistencyption and time, and thus corresponds to a state of no infor-
between surface-ocean and atmospheric data, the diagnostigation on£5/°. The variations in the prior values 65/,

nt
scheme is fit to atmospheric G@ixing ratios measured ap- €02 and the sea-air fluxe Ce?z, which then follow from

proximately weekly or hourly at a set of sites by various in- the process parameterizations, only comprise responses to
stitutions. Details are given in Table variations in sea surface temperature and the other driving
variables (including rising atmospheric @Qbut miss vari-
ations in the ocean-internal sources/sinks. As this a-priori
3 Results and discussion pC©2 field contradicts the data (black dots), the estimation
procedure now adjusts the internal flgk!C in such a way
The main product of this study is a data-based estimate ofhat the data are matched as closely as possible (blue). Most
the global spatio-temporal CGpartial pressure field and ul- prominently, this reduces or — as at the example pixel of
timately the sea—air COfluxes. Here we characterize and Fig. 3 — even reverses the seasonal variationgdf? (re-
evaluate its robustness, errors, and information content. Irilecting that thermal, biological, and physical effects partially
addition, we compare these results with independent data andppose each other). The fit at further locations is given below
previous estimates. The consideration of interannual vari{Sect.3.4).
ations is done in the companion paperd@nbeck et al., For most pixels, the SOCAT data set only sporadi-
2013). cally contains data points (in particular, periods of dense

Ocean Sci., 9, 193216, 2013 Www.ocean-sci.net/9/193/2013/
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Fig. 3. Example time series (full daily resolution) at the model pixel around Station FING@° E) of the main quantities of the diagnostic
model (Fig.1): sea—air CQ fluxes (f,%.?), surface-ocean CfOpartial pressure;(,?]oz), mixed-layer DIC concentratiorC(%'C), as well as
ocean-internal carbon addition to (removal from) the mixed Iayﬁ{‘f). Estimates have been obtained by fitting the diagnostic scheme to
SOCAT surface-ocean C(partial pressure dat&EC, blue). The SOCAT data points that happen to fall in the example pixel are shown as
black dots in thepS 2 panel. The Bayesian prioffI© = 0 and corresponding'©, &2 and 152, AppendixA2.2, Sect.3.2) is also
given (thin dashed grey lines).

Fig. 4. Amplitude of the seasonal cycle of surface-ocearp @@rtial pressure (patm) estimated by fitting the diagnostic scheme to the
SOCAT data (rursFC). The amplitude is given as temporal standard deviation of the 1997—-2009 monthlyp;%(&aat each pixel.
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from pseudo data sampled from this field at the times and lo-

Md Ex_tra}polﬁd cations of the SOCAT data (Append®. Constraining inter-
pixel pixel . ) AN
annual variations requires more even data distribution in time
€O, 10 than constraining seasonal variability; this density of data is
only available is some areas of the oceabdBnbeck et al.,
2013).
pggsz PN pCO: pCO: The spatio-temporal a-priori correlations also act to
smooth £,)/C on small scales (Fig3, bottom), as they damp
small-scale and short-term variations. This has been done
cbic cbic because the available data do not have the spatial or tem-
poral density required to constrain these fine-scale features
adequately. Nevertheless, despite the smgQ}ft the corre-
Dic conelated Dic spondingpC© and sea-—air COflux fields (Fig.3, top) do
adjustments comprise fast variations as represented in the process param-

eterizations, including responses to variations in temperature

Fig. 5. lllustration of the information flow in the spatio-temporal (changes in solubility and chemical equilibrium) or in wind
extrapolation through a-priori correlations. Where data values ex- . .
o X . .~ speed (e.g. accelerated depletion of an oversaturated mixed
ist, pixels are directly constrained (left column, which is identical

to Fig. 2). Due to the a-priori spatial correlations (Appenéig.2), layer in a high wind speed everBaFes et al.1997). These
adjustments tof2/ at the constrained pixel also changB/C at effects already account for a considerable part of short-term

int - -
neighbouring unconstrained pixelpC% is then calculated pas- variations (see Sec8.4 below). Only variations related to

sively from the extrapolated3/C by the process parameterizations, fast ocean-internal processes, such as the sub-weekly varia-
using the local values of the driving fields (right column). tions of upwelling events or algal blooms, will be missing. In

In data-dense areas, local adjustmentg{f§~ (both for constrained ~ any case, the pseudo-data tests (AppeBJliconfirm that the

and for extrapolated pixels) will need to compromise between sev-degrees of freedom in the diagnostic scheme provide suffi-
eral data constraints within the correlation radius (de-weighted withcient flexibility to follow variability as contained in the®®2
distance due to the decay of the correlation, FAd). As with  fields from a biogeochemical process model simulation (as
any smoothing, this may be beneficial in suppressing outliers, buthe model has less day-to-day variability than the pet2

also adverse in partly suppressing small-scale signals (the structurq@d’ however, this test may underestimate errors from alias-

from the driving data of f[he parameterlzlz%:tlons are never smootheqng such high-frequency variations into variations on the re-
however, as the smoothing only acts ﬁ}ﬁ[ ). In data-poor areas, .

o i . . solved timescales).
there may exist pixels that do not have any constrained pixel within
the correlation radius; thefR/ will stay close to the prior.
In time, extrapolation happens not only due to the a-priori correla-

tions, but additionally due to the memory effect resulting from the . )
relaxation time of the budget equation E42(). Figures6 and 7 show the seasonality of the sea—air £O

flux and the surface-ocean G@artial pressure as estimated

from SOCAT data by rursFC. The fields have been inte-

grated/averaged over a set of regions splitting the ocean into
regular sampling, as at Station M since 2006, are a rare exbasins and latitude bands.
ception). Thus, only a small fraction of pixels/time steps is To test how robustly the results are determined from the
constrained directly in the described way. However, mostdata and to assess the impact of errors in the parameteri-
parts of the space-time domain are still constrained indi-zations and their driving fields, individual important model
rectly through extrapolation via the spatial and temporal a-elements have been changed in sensitivity runs: (i) increase
priori correlations defined in Appendi®2.2. The mecha- and decrease of the a-priori uncertainty by a factor 2, leav-
nism is illustrated in Fig5. In particular, as seasonal vari- ing more/less freedom for inverse adjustments, (ii) decrease
ations in £,2'° are allowed to be adjusted much more freely of the a-priori uncertainty of non-seasonal variationg;
than non-seasonal variations (equivalent to a-priori correla-by a factor of 2, (iii) increase in the spatial correlation lengths
tions between adjustments fgﬁt'c at any given day of year by afactor of 3, (iv) increase and decrease of the global mean
in each year, Appendi&2.2), the mean seasonal cycle is ex- piston velocity by 3.2 cm (range given blaegler 2009, and
trapolated throughout the time period of the calculation. This(v) increase and decrease mixed-layer déplly a factor of
also means that data points in any year can contribute to cor2. The resulting range of results (grey bands in F&and
strain this mean seasonality. Thus, though there are regiong) is generally very narrow compared to the seasonal ampli-
or periods too far away from data points for extrapolation, tude, in particular fop©©2. In most regions, the sensitivity of
larger-scale seasonal variations are constrained almost everyhe sea—air flux is slightly larger than thatydf®2, almost en-
where in the ocean. This has been confirmed by assessintyely due to the uncertainty of gas exchange (variation in pis-
how well a givenp®®2 field can be retrieved by the scheme ton velocity). Larger spread ipn®©2 than in the sea—air flux

3.3 Robustness

Ocean Sci., 9, 193216, 2013 Www.ocean-sci.net/9/193/2013/
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Fig. 6. Monthly mean seasonal cycle of sea—air Ciixes, esti- Fig. 7. Analogously to Fig.6, monthly mean seasonal cycle of
mated by fitting the diagnostic scheme to SOCAT data G, surface-ocean carbon dioxide partial pressuf?, estimated by
blue). The grey shading around the standard result comprises seffitting the diagnostic scheme to SOCAT data (&#C, blue). The
sitivity cases listed in SecB.3. Fluxes have been integrated over grey shading comprises the same sensitivity cases. For comparison,
latitude bands split into ocean basins (including open ocean, coastahe p,%oz climatology byTakahashi et al(2009 is given (violet,
areas and marginal seas; panels in geographical arrangement). Segith a small additive adjustment to transfer the nominal year 2000
sonal cycles have been calculated over the period 1997-2009; thaverage into a 1997—2009 average according to the rising atmo-

first half year is repeated for clarity. spheric CQ partial pressure fielp$ %2, Eq.A3).

is found mostly in the North Pacific and the temperate North ] .
Atlantic, entirely due to a few marginal areas (including pix- from scale mismatch between the model pixeK( lat. x 5°
els in the far north of the Pacific, or the Black Sea and the!ong.) and the point measurement, but likely also from the
Caspian Sea added to the Atlantic region, see &igvhere nee_d to_compr_omise bet_we_zen the sigr_mal_s _of neighbouring lo-
the pC% seasonality is exceptionally high due to high SST cationsin Fhe fit: the statistics of the misfit in the surrou_ndlng
seasonality, but where gas exchange is low such that thei@ré@ (Pacific 45-90° N) reveal very small seasonal biases
contribution to regional sea—air flux is nevertheless small. 1f(Well below 1 patm, Fig9). The distribution of residuals de-
pC%2 is averaged only over the open ocean, pi%€” spread ~ Viates somev_vha'; from the Gauss[an as_sumeq mathe.matlcally
becomes narrow in all regions (see Supplement Fig. S7.8). In the Bayesian inference by having wider tails, but is sym-
metric. Example locations STM and — to a lesser degree —
3.4 Fitto the data BTM show close seasonal fit (Fi§), and agreement also in
some high-frequency features (see below). A less successful
The match of the estimated®®2 field and measured data fit is found at Stratus (South Pacific) in an area of low data
points somewhat depends on the considered location§fig. density (note that the independent data at this location are
At the North Pacific example pixel (i.e. within the region of mainly from after the end of the SOCAT v1.5 data period,;
largest spread among the sensitivity cases inBighe sea-  thus the agreement relies on the extrapolating effect of the
sonality is underestimated by some patm. This may resuldominating seasonal degrees of freedom (Appeiix2)
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Fig. 8. Comparison between the estimayéEJOZ field (runSFC, blue) and measurements (black dots) at test locations. Left: data contained in
SOCAT v1.5 (larger dots) at a pixel in the North Pacific, and the pixel around Station M in the North Atlantic. Right: two mooring sites in the
North Atlantic (BTM, 32 N, 64° W) and South Pacific (Stratus, 1978, 85.62 W) by Sabine et al(2010 that are not part of SOCAT v1.5
(smaller dots). The;co2 field has been picked at the times where the measurements exist (connected by straight lines for clarity); the time
axes have been limited to respective years with data. The monthly climatologgkiahashi et ak2009 (regridded and with added trend
parallel to the atmospheric GOncrease, violet) is also given. See Supplement for comparisons to SOCAT data (Fig. S7.5) and independent
data (Fig. S7.6) at further locations.

0.05 : : CAT v1.5 data set (FidLO, upper panels). In the extra-tropics
Winter (JFM) Histogram (example sites BSO or MOSEAN+WHOTS), many short-
oo L SuTmer (IAS) Histogram | term features are reproduced in IBRC, though mostly with

' /\ reduced amplitude. Discrepancies (e.g. beginning of 2007 at

BSO) can largely be explained by the deviation of sea surface

1 temperature in our driving field — regridded to thel® x 5°
pixels around the stations — from the local temperature (lower
4 panels). Note that this discrepancy does not preclude that the
pixel average op©2 is actually reproduced more accurately
than the local value, to the extent that our SST field repre-
sents the pixel’'s average temperature; however, this cannot
be validated or falsified based on the point data.

In contrast to the extra-tropics, the high-frequency varia-
tions in our estimate are unrelated or even opposite to those
of the measurements in the tropics (example site TAO170W),
Fig. 9. Histograms of the residuals of the fit to SOCAT data (i.e. €ven though the SST field performs similarly as at the
pC02 estimated by rurSFC minus data, patm, horizontal axis). extra-tropical sites. While in the extra-tropics warmer SST
Thin lines show the relative abundance (within bins of 5 patm) of leads to higherpﬁo2 as reproduced by the solubility and
residuals over a!l pixels f.rom. the North Pacific (north of 4§ and chemistry parameterizations, tropiqa%oz increases during
aII_tlme steps with data in winter (January—February—March, bI_ue)C0|d events, as in the upwelling of cold and carbon-rich
orin SUmmer.(JuIy_AUQUSt_September’ red). Respective thlCk“nesdeep water. Such events would have to be reproduced as
give a Gaussian of the same mean and standard glewauon. See SUIﬁ’i_gh-frequency variations in the ocean-internal sources/sinks
plement Fig. S5.2 for global maps of seasonal residuals. BIC ; )

fint _» Which however cannot be constrained from the SO-
CAT data set (potentially except at very few locations in pe-
i i , riods of high-frequency sampling).
but misses any interannual anomalies). See the Supplement xq gimilar conditions are found at other extra-tropical and

(Sect. S5, Figs. S7.5 and S7.6) for more comparisons anfiropical sites (Supplement Figs. S7.6, S7.7), we conclude

statistics. that our results reproduce at least part of the real short-term

In order to validate the high-frequency variations, we Com- 4 iations in the extra-tropics dominated by solubility and
pare them to mooring observations independent of the SO-

0.03
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Rel. frequency (1/uatm)

0.01

-100 -50 0 50 100
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Table 1. Data sets used as constraints or as driver data in the process parameterizatioAdjSect.

Quantity  Data set Reference Pre-treatment/resolution/remarks Used for

Surface-ocean data:

p%oz SOCATv1.5 Pfeil et al.(2012, Data are used having WOCE-flag =2 and valid fields for SFC
http://www.socat.info/ fugacity, temperature, and salinity. Values below
200 patm or above 600 patm have been excluded as
being local compared to the grid cells. Values have been
transferred from fugacity to partial pressure by
dividing by 0.996.

Atmospheric data:

cCC2 Various Conway et al(1994 CO, mixing ratiosc€2. Data points are individual ATM
measurement and many others flask pair averages (approximately weekly) or hourly averages,
programs taken at 57 sites globally.
Driver data:
T OAFIlux Yu and Weller(2007) Gridded, daily All
e OAFlux Yu and Weller(2007) Gridded, daily All
S WOA 2001 Conkright et al(2002 Gridded monthly climatology (interpolated, All
values taken fron data set)
A Lee et al (2006 Gridded monthly climatology (interpolated) All
Wl Egleston et al(2010 Mean spatial pattern All
Cr?]'c‘ Ref  GLoDAP Key et al.(2009 Mean spatial pattern All
h LOCEAN de Boyer Monégut et al(20049 Temperature criterion; All
monthly climatology (interpolated)
u NCEP reanalysis Kalnay et al.(1996 All
Meteo. NCEP reanalysis Kalnay et al.(1996 Driver for TM3 atmospheric transport model All

Comparison data:

p,%oz Takahashi et al2009 Gridded monthly climatology Sed.5
Cr'?]o“ WOA 2005 Garcia et al(2006 Gridded monthly climatology Sed.7

Glossary: GLODAP = Global Ocean Data Analysis Project; LOCEAN = Laboratoireédimagraphie et du climat: eépmentations et approches nérigues; Meteo. =
Meteorological variables as listed lifieimann and Krner(2003; NCEP = National Centers for Environmental Prediction; OAFlux = Objectively Analysed air-sea
Fluxes; SOCAT = Surface Ocean g@tlas; WOCE = World Ocean Circulation Experiment; WOA = World Ocean Atlas; Math symbols seeZlable

chemistry. In the tropics, more realistic short-term variationstion?. In data-dense areas, results should not depend much on
could potentially be obtained by parameterization of fast pro-the extrapolation method.

cesses (upwelling events) yf,ﬁt'c In most regions, the seasonal cycle estimated from SO-
CAT by the diagnostic scheme is similar in phase to the
pC%2 climatology byTakahashi et a(2009 (Fig. 7), though

the seasonal amplitude is somewhat larger in many regions.
Even better agreement is found when only considering the
open ocean: the open-ocean seasonalities in the temperate
North Pacific and Atlantic almost fully coincide (Supplement
Fig. S7.8). Open-ocean agreement is also confirmed at sev-
eral of our test locations (Fid).

The monthly mean seasonal cycle calculated from our spatiopjifferences between our seasonalities and Ta&ahashi
temporal p©* field has been compared to the widely et 4] (2009 climatology are somewhat bigger in areas of low
used observation-based climatology Bwkahashi et al. (ata density (e.g. the Southern Ocean), as expected. Com-

(2009, which differs from our method in the®® data set  parison to data at typical test locations tends to confirm the
used (Lamont-Doherty Earth Observatory (LDEO) databaseg|ightly larger seasonal amplitudes in our estimate (Big.

Takahashi et 812010 and in the way of spatio-temporal ex-
trapolation of the point data into pixels without data: while

the diagnostic scheme extrapolates the internal flux field ¢
DIC

3.5 Comparison to the Takahashi climatology

1 As a further methodological difference, the diagnostic scheme

. co, e es each data point at its original sampling time; thus no transfer to
fint and_then infery _from it via the process represen- 5 nominal year as iffakahashi et a(2009 is needed and interan-
tations (Fig5), Takahashi et a(2009 extrapolates thp©©2 nual variations in atmospheric G@bove the ocean are fully taken

field itself, using a 2-dimensional advection—diffusion equa-into account.
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Table 2. Mathematical symbols (also see TaB)eSome quantities are indexed by species or other distinctions explained in the text.

Quantity Uni#  Meaning

A ppm (umolnr2s~1)=1  Atmospheric transport matrix, EGAR5)

cphic pumolkg™l  Mixed-layer DIC concentration

cbic umolkg™1  DIC concentration in equilibrium with atmosphere

Cobs ppm  Set of observed atmospheric mixing ratios

¢mod ppm  Modelled mixing ratios, EqAR5)

co ppm Initial mixing ratio

fma pmol m2s1  Sea-to-air tracer flux, EqAQ7)

Fhist pumolni2s~1  History (re-entrainment) flux, EqAQO)

fint pumoln2s~1  Ocean-internal tracer sources/sinks, ZdL8)

F pumolm—2s~1  Flux model matrix, Eq.A26)

f pmol m2s~1  Vector of flux discretized at pixels/time steps

h m  Mixed layer depth

J 1 Cost function, Eq.A27)

Je 1 Cost function, atmospheric data part, E&24)

Jp 1 Cost function, surface-ocean data part, B@Q)

k ms-1 Piston velocity, Eq.A2)

L molkg~latm™1  Solubility (including fugacity correction), Eqsa() and (S1.1)
Pm patm  Partial pressure in mixed layer, Set.

Pa patm  Atmospheric partial pressure, EA3]

pharo atm  Barometric pressure at ocean surface

pady atm  Dry-air pressure at ocean surface

pHZO patm  Saturation water vapor pressure above ocean, Eq. (S1.3)
s %  Mixed-layer salinity

Sc 1 Schmidt number, Appendix S1.1

T °C Mixed-layer temperature (sea surface temperature, SST)
t s Time coordinate

t, te s Starttime, end time of inversion period

u ms1  Wind speed at 10 m above surface

x 1 Vector of adjustable parameters, E426)

X ppm  Dry-air molar mixing ratio in the atmosphere above the ocean
b4 m  Vertical coordinate

B 1 Temperature factor of CGpartial pressure, EqsAB) and A6)
r 1 Scaling of piston velocities, EGAR)

yPIC umolkg~1  Buffer factor (response factor), Eqp11)

e 1 Ice-free fraction of ocean surface£dce-covered, Eice-free)

appm = umol mot 1; b for the present purposes, salinity in %o or on the Practical Salinity Scale are considered interchangeable.

and Supplement Figs. S7.5 and S7.6). In particular, in theology using its open-ocean values. For example, this con-
North Pacific where differences between the two methodsributes to the differences in the temperate North Atlantic due
are biggest, larger seasonalities are confirmed both at the irto the Mediterranean (see Supplement, Fig. S7.5).
dividual pixels (see Fig8 for a typical example) and in the Partly, the differences in Figl can be traced to the fact
larger seasonal bias of about 8.5 patm in the differences bethat the two estimates are based on differgt2 data sets,
tweenTakahashi et al2009 and SOCAT data points in that though there is considerable overlap between the SOCAT and
area (however, the largest contribution to the difference in thdLDEO databases (this influence has explicitly been tested in
92 average of Fig7 comes from the northernmost pixels the Supplement Sect. S6). Sensitivity to data selection par-
where data are too sparse for a conclusive validation). Dataially arises from interannual variations; in particular, differ-
at Station M (Fig.8) also confirm larger seasonality in the ences inthe tropics may be related to the exclusion of EbNi
North Atlantic. data inTakahashi et ak2009. Moreover, the synthetic data
Differences between the two estimates are also bigger totest (AppendixB) reveals slightly too high seasonality in our
wards the coast. Note that part of these coastal differencesesults, though most of this mismatch is confined to certain
come from the fact that, in order to cover the entire oceanmarginal areas (that do not contribute much to the sea-air
surface, we extrapolated tAeakahashi et al(2009 clima- flux due to low gas exchange).
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Fig. 10.Top: time series of surface-ocepf:ro2 (natm) at independent mooring sites (not part of SOCATV1.5): Barents Sea OpenirfgN72.5

19.5 E, Arthun et al, 2012, combined MOSEAN and WHOTS moorings (22N, 157.92 W, Sabine et a).2010, and from the TAO

array (2 S, 170 W, Sabine et a).2010. Comparison between the measurements (black dots) and“efield estimated by fitting to

the SOCAT data (blue). The estimated field has been picked at the times where measurements exist; one year has been selected for ea
site. Bottom: sea surface temperature measured simultaneously%#h(black dots) compared to our SST driving field at this pixel (light

grey).

Beyond seasonality, agreement is also found in the im-ment Sect. S4), thisis largely related to the additional degrees
plied long-term average global sea—air flux. The 1990—-200%f freedom in adjusting land-to-atmosphere fluxes: signals in
average from rurSFC is —1.2 PgCyr! (range between the atmospheric data are partially wrongly attributed to land
—0.95PgCyr!and—1.45PgCyr? due to sensitivity cases or ocean. Consistently, best agreement betw&EM and
with lower/higher gas exchange rate, S&8). Within un-  SFC occurs in the southern regions away from land influ-
certainties, this agrees well with the value G£1.36+ ence, while the large disagreement in the temperate North
0.6) PgCyr! recomputed fronTakahashi et al(2009 by Pacific is due to the short but strong sink period during sum-
Wanninkhof et al.(2012 Table 2, “Net flux” and “Coastal mer, more typical for terrestrial boreal ecosystems.
area”) using CCMP windsAtlas et al, 2011). The results establish that oceanic and atmospheric data

In summary, we take the similarity between the seasonali-are consistent in regions away from land influences, but that
ties from the two methods based on similar data as an indicaestimates based op©©2 data provide much stronger con-
tion that the estimategd®®2 field in most regions is informed ~ straints on internal ocean processes, in particular in ocean ar-

by the data and not primarily method-dependent. eas closer to land. Combining the oceanic and atmospheric
constraints is therefore both possible and beneficial (com-
3.6 Comparison ofpC%2-based and atmospheric pareJacobson et al2007). It can be implemented by adding
results together the cost function contributions p¥©2 data (from

SFC) and of atmospheric CO(from ATM ). The estimated
fields in this combined case (not shown) are almost identi-
SFC) with the fit of the diagnostic scheme to atmospheric cal to theSFC run, as expected .from the weakness of the
; . atmospheric constraint on oceanic fluxes. However, as the at-
CO, data (runATM). In the Southern Hemisphere, there is . :
mospheric data constrain the sum of ocean and land fluxes,

broad agreement in the phasing and amplitude of the Seaianrovements of the estimated land fluxes can be expected.

§ona| cycle. In particular, t_he Qifference between the two "UNSof course, the combined run is essentially equivalent to us-
is much smaller than their differences from the (common)ing the sea—air fluxes of ttf&=Crun as priors in a subsequent
prior, i.e. than the adjustments due to the respective data con-

. . : ) classical” atmospheric inversion (similar as in the joint in-
straints. Less agreement is found in the tropics and the North-~ " . . .
. : . . . version byJacobson et gl2007). Details will be discussed
ern Hemisphere, in particular in the temperate latitudes.

: . further in the context of interannual variations in the com-
The ocean fluxes estimated from the atmospheric data _ .
anion paper (Bdenbeck et al., 2013).

are much less robust (more sensitive to changes in uncef
tain model details, not shown) than those estimated from the
pC%2 data. As investigated by synthetic data testing (Supple-

Figure 11 compares the SOCAT-based fit from F&y(run
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Fig. 11. Monthly mean seasonal cycle of sea—air Clluxes as  Fig. 12. Mixed-layer phosphate concentration (monthly climatol-
Fig. 6. Estimates by fitting the diagnostic scheme to SOCAT dataogy, mean subtracted). Seasonality inferred from the SOCAT fit
(runSFC, blue) are compared to the fit of the scheme to atmospheriqblue) assumes all ocean-internal carbon sources and sinks are re-
CO; mixing ratio data (rurATM , magenta), as well as to the prior lated to phosphate sources and sinks in Redfield proportions. For
(no data constraint, thin dashed grey) comparison, the P@climatology from the World Ocean Atlas
(WOA, Garcia et al.2006 is given (green). The grey uncertainty
band around the SOCAT-based estimates again gives the range of
sensitivity cases as in Fi@; note however that calculated @&

3.7 Plausibility of .the ocean-internal carbon also sensitive to several further model elements not included in this
sources and sinks range.

As the diagnostic scheme (in rUFC) is constructed to

match the CQ partial pressure data, any errors in the pa-

rameterizations linkings®® and f2!C (namely carbonate long as we are only interested in th&2 (and sea—air flux)
chemistry (including temperature or alkalinity dependence) fields, £ could be just considered a mathematical device
or mixed-layer carbon budget (including freshwater and his-in the mapping ofp©©2.

tory fluxes), see Fidl) will be compensated by spurious ad-  On the other hand, if the ocean-internal fluxes are of inter-
ditional adjustments to the ocean-internal carbon sources anest themselves (or in the envisaged extensions of the scheme
sinks. On the one hand, this means that the estimatét using further data streams like oxygen coupled to carbon via
(and sea—air flux) fields will be only little affected by im- fiﬁt'c), correctness of the parameterizations is needed. On
perfections in these parameterizations. Even at pixels not dithe seasonal timescale considered here, the plausibility of
rectly constrained by @°©2 data value but only indirectly the estimated:2/C field can be tested in the light of mixed-

via extrapolation of thg‘iﬁt'c field through its a-priori spatio-  layer phosphaltnet concentrations. As explained in AppeGdix
temporal correlations (Figp), any such bias will largely can- a modelled mixed-layer phosphate field can approximately
cel out (to the extent that it is the same at the directly con-be calculated from oufir?t'c estimate, and can be compared
strained and the extrapolated pixels). This leads to the robusto an observation-based monthly climatology (World Ocean

ness of thep©®2 estimate shown in Sec3.3 Therefore, as  Atlas, Garcia et al.200§. The inferred PQ concentration
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seasonality is broadly similar in phase and amplitude to An advantage of explicit parameterizations, as in the pro-
the observations (Fid.2), including characteristic region-to- posed mixed-layer scheme, is that the unknowns (here: in-
region differences, though overestimation is seen especiallyernal sources/sinks) are physical quantities which are poten-
in the temperate latitudes. Given that part of the mismatchtially open for interpretation (compare Se8t7). They also
arises because the modelledfR@ncentration neglects non- enable us to use measurements of further quantities of the
Redfieldian sources/sinks (as justified in Appen@jxand scheme (such as mixed-layer DIC concentration, nutrients,
because of errors in the observed,Rmatology which are  etc.) as data constraints as well. These further data streams
likely significant (and amplified by the Redfield ratio), we can either be used instead of the present opggz(or at-
take this agreement as broad confirmation of the employedanospheric data) to create alternative estimates for compari-
parameterizations. son, or in conjunction with the present ones to potentially in-
The carbonate chemistry parameterization (including itstroduce further unknowns and so distinguish more processes
driving fields, in particular alkalinity) can specifically be (e.g. carbonate chemistry).
checked using DIC data. This is done in the companion paper All carbon sources/sinks in the ocean and on land are
(Rodenbeck et al., 2013). linked to oxygen sinks/sources, most of them in rather well-
defined stoichiometric ratios. The diagnostic scheme can
3.8 The diagnostic mixed-layer scheme in the context therefore be extended to also make use of atmospheric or
of other p%oz mapping methods oceanic measurements of oxygerd(lnbeck et al., 2013).
Beyond the scheme as presented here, multi-linear re-
The suitability of individualp$> mapping methods (Sed) ~ gression could be brought in by expressing the unknown
depends on the intended application. The primary motivationocean-internal fluxes as a linear combination of (further)
of the diagnostic mixed-layer scheme presented here was tdriving variables and then match the data by adjusting time-
be able to process different data streams (sopfd? and  independent weights. This would make the estimation more
atmospheric C@ mixing ratio) in a consistent way, and to similar to data assimilation, with the benefits and risks men-
combine them. The intention was to achieve this in a datationed above. Further, instead of linear combinations, pa-
dominated way, with the least complex model possible. rameterizations of the ocean-internal processes involving ad-
Statistical methods like the referenpgoz C|ima’[0|ogy by justable parameters could be used if available. This would
Takahashi et al(2009 or the interpolation bylones et al. ~also open up the way to use even further data streams, such
(2012B have the advantage of being data-dominated, quites ocean color from satellite observation.
independent of driver data sets and process parameteriza-
tions. Regression methods (multi-linear regression, neural
networks) use driver data sets to bring in information about4 Summary and conclusions
modes of variability not resolved by the data, thus addressing
the problem of data sparsity; still, they leave flexibility in the We presented a temporally and spatially resolved estimate
way of howp$X2 and these driving fields are related. Finally, Of the global surface-ocean G(artial pressure field and
data assimilation into process models then also prescribede sea-air Coflux, obtained on the basis of G(artial
this relation analytically, which brings in process knowledge Pressure data from the SOCAT database. In order to inter-
as a further constraint, with the risk of suppressing real vari-Polate the point data into a spatio-temporal field and to add
ability not captured in the chosen parameterizations. short-term variations not constrained from the data, a simple
The diagnostic scheme is similar to the regression methmodel of surface-ocean biogeochemistry, including represen-
ods, thereby also reproducing some of the short-term varifations of sea—air gas exchange, solubility, carbonate chem-
ability (Sect.3.4). It is more rigid, like data assimilation, for iStry, mixed-layer DIC budget, and seasonal re-entrainment
some processes that may be considered relatively well knowf history”), was fitted to the observations. The inverse proce-
(sea—air gas exchange, carbonate chemistry, and mixed-layQPre was similar to atmospheric inversion calculations, using
mass conservation). It is more free, on the other hand, for théPatial and temporal a-priori correlations to extrapolate the
ocean-internal sources and sinks (it is independent of any aglata information.
sumptions except for smoothness as needed to regularize the Focusing first on seasonal variations, the following con-
mathematics), i.e. it is purely statistical here. The smoothnes§lusions were drawn:
assumption represents the mechanism of spatio-temporal in-

terpolatior?. — The diagnostic scheme can be robustly fit to SOCAT

pC€%2 data, to estimate the spatio-tempopdl®2 field
and sea—air C®flux (run SFC).

2 This results in different notions of output resolution: Formally,
the resolution is daily and- 4° x 5° pixels, but part of this fine-

scale variability is only coming from the driving data, while only ~ — In terms of seasonality, the resultimﬁof field agrees
the larger scaless( monthly and> 1500 km areas) are actually in- well with the climatology byTakahashi et al(2009,
formed by the SOCAT data. confirming that the estimates are informed by the data.
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Differences mainly occur in coastal areas and marginalAl.1 Solubility and gas exchange

seas, as well as in regions where data density is low.
] ) . Sea-air flux is expressed in the usual way in terms of a partial
— The atmospheric Cfconstraint on surface-ocean bio- pressure difference,

geochemistry (rurATM ) is not robust in general, but
consistent with the oceanic constraint (IBRC) in ar- CO2 — §CO2p €O (pr‘f]OZ — p§02> (A1)
eas away from land influences. This confirms that it is

appropriate and advisable to use the oceanic constrairf@Mmospheric siggz gonvention: po_sitive=sourc_e to atmo-
as oceanic prior in an atmospheric inversion, to improvesPhere), where)% is the CQ partial pressure in the at-
the inferred land fluxes. mosphere, ancjamo2 the CQ partial pressure in the ho-

i i i i _mogeneous mixed lay&rThe temperature-dependent solu-
— The diagnostic scheme involves interpretable quanti-y;iv 1 CO2 relates the partial pressure difference to a dis-

ties, as indicated by the comparison of predicted andg,yeq cq concentration difference. The seawater density

observed seasonal phosphate variations. The scheémg haqqeq to relate volume-based and mass-based quantities.
can be extended by parameterizations of ocean-internaty,q gt sive resistance to sea—air gas exchange is described

sources and smks,_thgt ‘,"‘I,IOW us.to use fur.ther dat&by the piston velocityt©©2. We use the formulation accord-
streams to constrain individual biogeochemical pro- ing to Wanninkhof(1992:

cesses.
05
c 2(c.C Ref
— Using synthetic data tests (as in Appendix B), the diag-¥ % =Tu (SC %/5Se e) ; (A2)

nostic mix_ed-lgyer madel Caf‘_a'so be applied to B_ a5~ calculated from 6-hourly NCEP wind spesdKalnay et al,
sess possible impacts of additional data on constralnmql_gga and Schmidt numbesc given in the Supplement
ocean biogeo_chemistry, helping to design future Obser'Sect. S1.1. The global scaling factbris chosen such that
vation strategies. the global mean Cg@piston velocitykg%b matches the value
The results also include interannual variations, which will from Table3 given byNaegler(2009 (average of values by
be considered in a companion papero@@nbeck et al., Naegler and Levir{2006), Krakauer et al(2006, Sweeney
2013). et al.(2007), andMilller et al.(2008 inferred from radiocar-
The griddedp©®2 and sea-air Coflux estimates will be  pon data).
made available for download in digital form from the Jenain-  The atmospheric partial pressure

version websitewww.bgc-jena.mpg.deRegular updates are o, CO, . dry
planned. pat=X""p (A3)
inherits variability not only from atmospheric dry-air pres-
dry -
Appendix A sure p®Y (Supplement Sect. S1.1) but also from the atmo

spheric CQ molar mixing ratioX©®2 just above the ocean
surface, which has considerable increasing trend, seasonality,
and — even over the ocean — synoptic variability. It is taken
from the atmospheric Cmixing ratio fields provided by the

Model documentation

For reference, all mathematical symbols are listed in Tables

ands3. Jena inversion s8%3.4 (seehttp://www.bgc-jena.mpg.de/
~christian.roedenbeck/download-CQ@Zhis X € field has
Al Ocean process parameterizations been obtained from a forward run of the atmospheric trans-

port model (TM3, resolutiorr 4° x 5° x 19 layers), with
This section details the equations used to express sea—air fltsurface fluxes from a classical atmospheric transport inver-
as a function of partial pressure (Seéil.1), partial pres-  sion based on atmospheric €@easurements. Thi
sure as a function of mixed-layer concentration (S&tt2), field constructed that way is compatible with measured CO
and mixed-layer concentration as a function of ocean-interiommixing ratios at the sites used, and therefore realistic at least
source/sinks (SecAl.3), going down the chain of parame- in the rising trend and large-scale seasonality; the sensitivity
terizations in Fig. of the results presented here to thi€®2 field is small (see

The variables of the following parameterizations are Supplement Sect. S2).

spatio-temporal fields, with a temporal resolution of 1day — : — , N .
. . o o : . More precisely, it is the C®partial pressure in air in equilib-
and a horizontal resolution o£4° x 5°, i.e. the equations . ; . i
rium with sea water of the present chemical composition.

are applied to every pixel of the atmospheric transport model. 4 OF course, the use of inversion-bas&®%2 already creates
Vertically, we consider an oceanic mixed layer ass_umed tobe e depende;wce of our prior from atmospheric data. [ATiM ,
perfectly homogeneous in temperature and chemical compos formally violates assumptions of Bayesian inference, which
sition, exchanging inorganic carbon with the overlying atmo- however could only affect calculations of a-posteriori covariances.
sphere, the underlying ocean interior, neighbouring pixelsEven there, we would not expect problems due to the small sensi-
and the organic carbon pool. tivity on X0z,

Ocean Sci., 9, 193216, 2013 Www.ocean-sci.net/9/193/2013/
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Table 3. Physical constants, and geophysical quantities assumed constant.

Quantity  Value Meaning

cp 3993Jkglk—1 Specific heat capacity of sea water (value at@p

kg%o 165cmht (= 4.58-10°ms1) Global mean piston
velocity of CO, (Naegler 2009

Rgas 8.3144JmorlkK—1  Gas constant

To 27315K Absolute temperature aC

Videal 0.0224136 Mmol~1  Molar volume of an ideal gas

0 1025kg n3 Density of sea water

Table 4. Adjustable degrees of freedom.

Quantity A-priori Spatial Temporal
value resolution resolution

Carbon cycle components:

figtlc Ocean-internal DIC sources/sinks Zero corr. pix. +HKeas
ne%Z Land NEE (runATM only) corr. pix.  It, seas, var

Technical degrees of freedom:

DIC, ini

ACn Initial condition of budget equation Zero COIT. pix. -
fi(n:io2 Flux pulse for atmospheric initial condition (ré&TM only) Zero 3lat. bands -
Glossary: It, — = constant (long-term); seas = seasonal; var = interannual and short-term variability; corr. pix. = correlated pixels; math symbols see
Table2.
Al.2 Carbonate chemistry Even though this relation has been fitted to data in the tem-

perature range of about 2 to 26, it is used here for all tem-
The CQ partial pressure in the mixed layer is a function of peratures.

mixed-layer DIC ConcentratiOﬁr?'IC, alkal|n|ty A, tempera- The remaining dependences m%loz are non-linear, but

ture T, and salinitys: monotonic and can be linearized to good approximation
(Sarmiento and GrubgR00§. Linearization of the depen-

peO2 = pCO2 (Can'C, A, T, S). (A4)  dence onCP'C is important here in order to be able to

use the fast minimization algorithm &ddenbeck(2005
In the diagnostic scheme, the relevant dependence is that diect.-A2.1). We consider deviations\() of the driver vari-
CPIC while the influences ofi, T, ands are calculated a- ables from temporally constant reference values (superscript
priori from driver data (Tabld). While the exact functionis “Ref”, see SectAl.4 below):
a 5th order polynomialdeebe and Wolf-Gladroy2001), we CDIC _ A(DIC | ¢DIC,Ref (A7)
use existing approximations, as described in the following. ™ m m

. ! : Ref
At first, we single out the temperature dependence intoa A= AA +A™° (A8)
temperature-dependent factor apg*? at a reference tem- S= AS 4R (A9)
peraturer Ref: o .
Linearization of Eg.A5) around these references gives
pC% =g (T, TRef) pSO(CPIC A, TRET ). (A5) pS = (T, TRef) x (A10)
P2 Opm 2 opm 2
For iso-chemical sea water (i.e. constaffC, 4, and ), pCOzRef | WACEJC + A I AS
Takahashi et ali2009 experimentally determined the ratio m
of p? of samples at different temperatures to be The DIC sensitivity has been calculated from the response
. factorsy P'C by Egleston et al(2010:
T,T:x{.4K_T—T A
B(T1, T2) = exp0.0433K™ " (T1 — T2) (A6) 9GO COuRel
B 52 (72 2 = , (A11)
435x10°K2(12 - 74) . 9CDIC = —,BIc
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The alkalinity sensitivity has been calculated using the ap-consider that changes in the spatio-temporal field of dis-

proximation solved carbon in the mixed layer need to be balanced by the
3pr(1:102 ap%OZ’Ref sum of fluxes:
0A = ARef X (A12) ECDIC _ i (_fCOZ +fDIC +fDIC _I_fD|C) (A18)
_(ARef)z da m - hQ ma hist frw int .

(anlc, Ref ARef) (ARef_ quc, Ref)

(Eq. (8.3.17) ofSarmiento and GrubgR006 note missing
minus sign). The salinity sensitivity (direct effect on chemi-
cal equilibrium only) has been set to

Fluxes (carbon exchange per unit horizontal area and unit
time) comprise loss through sea—air exchaﬁﬁ%, seasonal
re-entrainmentf,>IC and freshwater effectghlC explained
below, and fluxesf5/° due to all other ocean-internal pro-
cesses (biological conversion, vertical advection/diffusion,
or horizontal advection/diffusion). This formulation assumes
that fluxes are immediately diluted vertically throughout the
98 mixed layer. Mixed-layer depth is prescribed as a climatol-
(Eg. (8.3.5) of Sarmiento and Gruber200§. Any sea-  ogy by de Boyer Monégut et al.(2004 (downloaded from
sonal and interannual variations in the proportionalities http://www.locean-ipsl.upmec.fredblod/mid.htmlusing the
Ipa 2 /aCPIC etc., are neglected. The variations in alkalin- MLD climatology mldT02sk.nc according to a temperature
ity, A, and salinity,S, are fixed according to input data sets criterion; chosen because the MLD climatology based on a
(Table1). Their effect onprﬁioz is illustrated in the Supple- density criterion has incomplete coverage, and there is no

ment Fig. S7.2. Note that the effect of the alkalinity vari- MLD product directly based on data that also represents in-

COy, Ref COy, Ref
Pm _ Pm (A13)

SRef

ations, which are strongly related to freshwater fluxes, istérannual variations). The densigy of SDlIJCrffflce water (as-
mainly offset by the freshwater effects on DIC consideredSumed constant, Tabl® is needed a€ ™ is mass based

below (Eq.A19).
Equation A10) provides the desired linear link between

changes ip$>? andCRIC according to carbonate chemistry.

(given in umol kg'1), while fluxes are volume/area based.
Two specific ocean-internal processes are not considered

part of £DI° but are parameterized explicitiyn the budget

For simplification in the further use, we combine the gas ex-(EQ.A18):

change and chemistry formulas: we first define an apparent

DIC concentration in equilibrium with the atmosphere,

C 8Pr(r:102 - ngz COy, Ref
ACPIC — — 'Re Al4
CO CO;
ad ad
_9Pm AA— Pm AS
dA as

Using this definition, Eq.A10) becomes

C
8Pmo2

P02 = pS% 4 (7, TR) L
aCR

(Acg'c - ACa) (A15)

Now also defining an “apparent piston velocity” of DIC as

C
al’moz
acoc

kPIC — CO2. [ COzg (T, TRef) (A16)

Egs. A1) and @A15) can be combined and simplified into
S50z = kP (ACR® - ACa), (A7)

expressing the sea—air G@lux as a linear function of the
surface DIC concentration.

Al.3 Mixed-layer DIC budget

To finally establish the link between the mixed-layer DIC

concentration and the ocean-interior sources and sinks, wgP!C

Ocean Sci., 9, 193216, 2013

— The freshwater effectPI describes the dilution or
enhancement of the mixed-layer DIC concentration by
precipitation, evaporation, river freshwater input, or sea-
ice formation/melting. Analogously to the often used
salinity normalization $armiento and Grubg006),
we assume that freshwater does not contain either car-
bon or salt (and that all salinity variations are related
to freshwater fluxes), and calculate the freshwater effect
on DIC from salinity changes:

DIC,Ref
CmoReds
DIC _ m
frw” =he—crer— g, (A19)

This will tend to overestimate the effect to the extent
that freshwater input does carry carbon.

The “history” flux £2IC is part of the carbon exchange
between the mixed layer and the underlying ocean. Con-
sider the hypothetical case that no sources or sinks are
acting below the mixed layer. Then, as soon as the
mixed layer is deepening, it re-entrains water that was
left behind previously during mixed-layer shoaling. As
mixed-layer concentrations will generally have changed

5 The explicit treatment of these processes is not strictly needed
if the only purpose of the scheme was mappingySPZ, because
they would otherwise be absorbed ing&!® during the fit to the
data. However, splitting them off allows easier interpretation of

it~ (Sect3.7), and also prepares for the envisaged link to oxygen.

Www.ocean-sci.net/9/193/2013/
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meanwhile, this re-entrainment is equivalent to a car-Solving this equation would be numerically involved but for-
bon flux which is proportional to the difference between tunately is not needed in practice: First§f < R only de-
the current concentratiofip'®(r) and that at timeprey  termines the absolute levels of DIC (E&7) not considered
when the mixed layer was as deep for the last time. Wenere, but does not directly affect our target quantitig or
call this the “history” flux. It can be written as sea-—air fluxes (as it cancels out both from E44.5), (A17),
- bIC - dn and (@A21); we nevertheless use a data-based field because
Jrist M) =0- (Cm (tprev) — Crmy (f)) -© <a> (A20) & minor influence oC2'® R®' arises through EqA12) (al-
kalinity sensitivity) and Eq.A19) (freshwater effect)). Sec-
The Heaviside step functio® ensures thaifiis; only  ondly, the partial pressure reference vapfg™? "¢ has no
acts during mixed-layer deepeninghfdi: > 0). The  effect either: Though changes i, > R shift the long-term
history flux is non-zero in the long-term mean: The mean ofAC, through Eq. A14), the same shift then happens
deeper waters that get disconnected from the shoalingg ACPIC through Eqg. A21) with Eq. (A22), such that it

mixed |ayer will preserve the h|gh DIC concentrations again cancels out from Eq§\15) and @\17) The choice of
of the winter season. A budget equation that does not in- COz. Ref ;¢ 4, 15 arbitrary (we uspgoz () as for numerical

clude the re-entrainment of this amount of DIC during
mixed-layer deepening would imply a systematic down-
ward “leak” of DIC. The history flux is thus esse_ntial 0 A2 |Inversion

balance the long-term mean internal sources/sjifk§

with the mean sea—air exchangée?2 (plus the mean The estimation procedure of this paper is derived from the
DIC accumulation in the mixed layer itself). This has linear Bayesian atmospheric inversidwefvsam and Enting
been verified numerically, and Sect. S3 proves this bal-1988. The implementation is based specifically on the atmo-
ance analytically. spheric transport inversion (“Jena g{@version”) described
Any changes of the DIC concentration below the mixed " RodenbecK2003 and reviewed in SechA2.1. This atmo-
layer will lead to additional entrainment fluxes, forming SPNeric transport inversion is extended by representing sea-

reasons a value on the order of the ac;&%?z is desirable).

an important part oﬁ%c_ air qu.xes by 'éhe ocean pargmeterization_s (SAQI:IZ) and
o _ _ by using thep©®2 constraint instead of or in addition to the
Substituting Eq.£17) into Eq. A18) gives atmospheric constraint (Seé2.3).

d xPIC xPIC

EAC%'C = —TACan'C + TACE'C (A21)  A2.1 The classical atmospheric transport inversion
1 1 1 _ . .

_,__fhtfsl‘tC{ACr%IC} + —ffR,!,C + _firE:tIC’ The at.mospherllc inversion is based ona sc_et of observed mix-

ho ho ho ing ratioscops (time series at observation sites, see Tdble

where we further exploited that the temporally constant ref-The inversion calculation seeks fluxgghat lead to the best
erenceC© Ref disappears from the left-hand side. The ref- match betweeiops and corresponding modelled mixing ra-
erence also cancels out in the history flux (B80), which  ti0S cmod(f), in the sense that the value of the cost function
is thus a linear functional ok CR'°(r). Equation A21) thus

represents a%lorder differential equation inC2'C that can

be solved (numerically) for given “forcingf,%'C. At the be-  Je = 5 (€obs— ¢mod) ' Qg H(Cobs— €mod) (A24)

ginningy; of the time period, we use the initial condition

DIC,, \ _ _ DIC. ini is minimal (superscript T means vector transpose). The (di-
ACm™ (1) = ACa(t) + Al ) (A22) agonal) matrixQ. introduces a weighting among the con-
Up to a constant offset (determined I * Re and an  centration values, involving assumed measurement uncer-

initial transient (determined beCalc, ini, see Supplement tainty, location-dependent model uncertainty, and a data den-

Sect. S1.2), Eq.A21) thus provides a linear dependence of Sity Weighting, as described Rodenbec2003. The mod-
DIC elled mixing ratios, taken at the same time and location as the

CEIC on £DIC for every pixel. _ : ;
observations, are simulated by a numerical transport model
Al.4 Reference values (here, the TM3 modelHeimann and Krner, 2003, which
can formally be written as
For the reference valuaga'© Ref gRef 7Ref anggRef e
use the long-term averages of the respective driver data setsnod=A f + co (A25)

(Tablel) for each pixel. The partial pressure reference value . o _
pr%OZ’ Refin Eq. (A10) formally follows from the functional Wlth. the transport matm.A and the |n|t|a.I concentratlocp.
relation Since the atmospheric data at the discrete set of sites can-

o Rel | C DIC.Ref Ref —Ref oRef not fully constrain the flux field at all pixels and time steps,
Pmoz’ o= Pm02 (Cm REARE TR g e)- (A23) Bayesian a-priori constraints are introduced to regularize the
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estimation. They are implemented here by writing the fluxes
as a function of a set of parametars
f(x)= fpri+Fx. (A26)
In this linear flux model Rddenbeck2005, each parameter
in x acts as a multiplier for one of the columns of the ma-
trix F to be explained below. A-priori, the parameterare
assumed to have zero mean and unit variance and to be un-
correlated, expressed by adding the Bayesian cost function
contribution
1+

J=J:.+ Ex x. (A27)
This is equivalent to assuming fluxes with a-priori mefas
and a-priori covariance matri s pri = FFT.

The specification of the flux model elemenfts; andF is
detailed inR6denbeck(2005. The flux is first written as a
sum of contributions from several components:

S = fmat freet fos+ fini (A28)

C. Rddenbeck et al.: Global surface-oceap©©2 and sea—air CQ flux variability

(superscript “It"), mean seasonality (“seas”), and
non-seasonal variations (“var”, interannual and high-
frequency variations). The specification of the priors,
a-priori sigmas, and correlation structure is taken from
the Jena inversion v3.2 (as documentedRimdenbeck
(2005 except for a-priori uncertainties tightened by the
factor +/8, and length scales of a-priori spatial correla-
tions increased by a factor 3 in longitude direction and
by 1.5 in latitude direction).

[fios: fossil fuel burning. Only a fixed (prior) term,
as in the Jena inversion v3.2 (yearly emissions from
the EDGAR v4.0 database, update ©fivier and
Berdowskj 2001).

fini: purely technical component. Flux pulse at begin-
ning of inversion period to adjust initial atmospheric
mixing ratio field (sedRddenbeck2005.

The numerical minimization of the cost function is done
by Conjugate Gradient descent with re-orthonormalization

(fma = sea—air flux,fnee = terrestrial net ecosystem ex- (Rodenbeck2003.

change (NEE) f1os = fossil fuel burning emissionsfin; =
flux pulse at beginning of inversion period to adjust initia
atmospheric mixing ratio field). Each componeérig repre-
sented by a structure as E426), i.e.

f@) =" (fprii +Fixi). (A29)

| A2.2 Extension: using ocean parameterization

The inversion set-up used in this study is identical to the Jena
inversion system as of Sed@2.1 in most respects, except
that the sea—air fluy na is not estimated directly but im-

; plemented as a function of the ocean-internal ffigg using
the parameterizations of Seétl. Then, instead of ma, the

where the vectors; denote subsets of parameterscinand

ocean-internal fluxfiy: is adjusted to match the data con-

the matrices; denote the corresponding groups of columns ¢iraint. The detailed flux-model specifications 6 are

of F. The columns oF; represent spatio-temporal base func- gimilar to those for the sea—air flux in the atmospheric in-
tions out of which the spatially and temporally varying ad- ,orsion:

justments to the flux fielgf; are composed. In space, the base

functions represent flux elements localized at each of the grid — The a-priori state has been deﬁ”edﬁﬂ%ri =0 (noin-

cells of the transport model. These elements overlap each
other by exponential tails, acting to smooth the flux field. In
time, the base functions represent Fourier modes. Smoothing
is achieved by down-weighting the higher-frequency modes.
In addition to the a-priori correlations implemented that
way, all columns of; are proportional to a spatio-temporal
weighting allowing flux adjustments in areas of activity of
the component (e.g. over the ocean foy5) while suppress-
ing flux adjustments elsewhere.

The detailed flux model settings for the componefitef
the surface-to-atmosphere g@®ux in the “Jena inversion”
are

— fma sea-—air flux, being of central interest here. In the
pure transport inversion as Rodenbeck(2009, this
component is estimated directly by decomposition into
flux elements as just described.

— fnee,it+ free, seas- fnee, vai terrestrial net ecosystem
exchange (NEE), further split into long-term flux

Ocean Sci., 9, 193216, 2013

ternal sources or sinks). The “error” of this prior model
i =0 is then identical with the process fluxes
themselves. Therefore, the a-priori uncertainty around
this prior should reflect the expected amplitude of vari-
ations. In the standard set-up, we make no assump-
tions about spatial structure of the amplitude, and take a
constant per-ocean-area uncertainty over all the ocean.
No adjustments are allowed in ice-covered regions (see
Supplement S1.3). The a-priori uncertainties are scaled
such that the implied a-priori uncertainty of the globally
integrated sea—air flux is 1200 Tmolyr (with respect
to 3-monthly anomalies).

Bayesian a-priori spatial and temporal correlations have
been implemented that dampen variability /¢ on
scales smaller than around 640 km (longitude), 320 km
(latitude), and about 2 weeks (time), Fiyl. The cho-
sen e-folding lengths are one-third of the ocean flux cor-
relations in the standard Jena Inversion v3.4 (update of

Www.ocean-sci.net/9/193/2013/
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Fig. A1. Top: map of a-priori correlation coefficients with respect to an example pixel ;7409 S), illustrating how inverse adjustments
to fiD'C de-correlate with distance. Bottom: a-priori correlation coefficients with respect to an example time step in the middle of the

nt

inversion period; in addition to the de-correlation away from the example time step, correlations rise again each year due to the dominance

of the seasonal cycle.

Rodenbeck20058, and similar to those gf<®2 found
from correlation analysis along cruise tracks Jynes

et al. (20123. The correlations are seen as a mathe-
matical device to stabilize the estimation by suppress-
ing noise which results, for example, from unequal sam-
pling (they represent the main mechanism by which the
information from the discrete atmospheric or oceanic
data points is extrapolated into space and time, see
Fig. 5 for illustration). The correlation scales need to
be large enough to accomplish this extrapolation, but
small enough not to unduly dampen actual signals. Cor-
relations shorter than in the standard atmospheric in-
version have been chosen to reflect the higher spatial
detail in the p©©2 data. For example, this is impor-
tant in the North Atlantic where shorter correlations are
needed to prevent a large influence of coastal data on

6 As an additional minor technical change, the basic spatial grid
of the adjustable degrees of freedom is every pixel of the TM3 trans-
port model grid, rather than aggregates of 4 neighbouring pixels,
reflecting the higher spatial resolution of the data.

WwWw.ocean-sci.net/9/193/2013/

the regional average (test not shown). Shorter correla-
tions also prevent implausible leakage of interannual
variability of the tropical Pacific northward and south-
ward (see Rdenbeck et al., 2013). On the other hand,
longer correlations may have been beneficial in the data-
sparse Southern Ocean as they lead to slightly better
performance in synthetic-data tests (analogously to Ap-
pendixB, test not shown). In any case, simple distance-
based de-correlation necessarily represents a crude ap-
proximation to the unknown real correlation structure
of the ocean-internal sources/sinks determined by com-
plex processes. To ensure that this approximation does
not critically determine the result, runs with different
de-correlation lengths are included in the set of sensi-
tivity cases in our robustness test (SEcR).

In the time domain, we additionally dampen all non-
seasonal variability by a factor 16 with respect to the
seasonal variability (this is accomplished by implement-
ing the time dependence ¢! as a Fourier series and

reducing the a-priori uncertainty of the non-seasonal
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modes, se®odenbeck2005. Such tighter a-priori un- For the case combining atmospheric and oceanic con-
certainties for the interannual variations are consistentstraints (Sect3.6), both cost function contributions are added
with the expectation that their amplitudes are smaller(J = J. + J, + %xTx).

than those of the seasonal variations. Moreover, they

dampen spurious interannual variations that may other-

wise arise from the very different coverage of the SO- Appendix B

CAT data in the individual years, and extrapolate the

mean seasonal cycle g}/ throughout the inversion  Test of retrieval capability

period. As the chosen dampening factor is largely arbi-

trary, it has also been varied in sensitivity tests. As a prerequisite to interpreting the results of fitting the
. _DIC.ini scheme to surface-oceaY®2 data, we need to test whether
A further degree of freedom iaCm ™ blrg:e_eded only for (1) the scheme contains sufficient degrees of freedom to re-
technical reasons: Through adjusting”m ", the initial  produce the spatial and temporal variability of e field,

conditions of the carbon budget equation can become consigyng (2) the information available in the SOCAT data set is
tent with the data (see Supplement Sect. S1.2). Adjustmentgiicient to constrain it. This test is done by a synthetic run:
to ACRIC’ n are Sana”y resolved with the same Spatial cor- (1) We create a Spatio-tempo,zd{:oZ field to be used as syn-
relations asfint, but constant in time; the a-priori value is thetic “truth” on the basis of a biogeochemical process model
Zero. simulation (NEMOv2.3 with PlankTOM3uitenhuis et al.

In run ATM, there are further degrees of freedom not 2010, mapped to the grid of our scheme. The seasonal cy-
needed in rurSFC: as in the atmospheric inversion, land cle of this field is similar to the observations at most loca-
fluxes are adjustable as specified in Sé@.1, as well as  tions except for the high latitudes, which is why we subtract

the adjustable atmospheric initial condition. a mean seasonal cycle and replace it by thaTakahashi
Table4 summarizes the variables that are adjusted in theet al. (2009. This combined field then contains variations
cost function minimization. similar to reality on all relevant timescales (though variations
o co . on the fastest (weekly to daily) timescales are smaller than
A2.3 Extension: thep™™2 constraint observed). (2) This synthetje"©= field is sampled at the lo-

L . cations and times of the SOCAT measurements, in the same
Analogously to the observed atmospheric mixing ratigs, CO, £ o
: way as the modelleg™™2 field (SectA2.3). This gives a set
all selected partial pressure values from the SOCAT database : . .
. . of pseudo data representing the same amount of information
(Table 1) are collected into a vectgwops. A corresponding

VeCtor prmod of modelled partial pressures is formed by sam- (in terms of data density available to the scheme) as the actual

. . CO, ¢ ) data (note that SOCAT also contains along-track variability
pling the griddedpr,™ field of the model at the locations _on scales much shorter than the size of our grid cells, which

and times of the measurements (i.e. the modelled value i%he scheme cannot make use of in any case). (3) We then fit

t_hat/fpund flnhthe gndcell/ng?esteg Wh'Ch, enclﬁses thellgg_the diagnostic scheme to the pseudo data, and compare the
tionftime of the corresponding observation). If severa “result with the synthetic truth as the known correct answer.

CAT data points fall into the same gridce!l and timestep, they In terms of mean seasonality considered here, the retrieval
are averaged together and only form a single elemengig (blue) fits the “known truth” (violet) closely (Fidg31). Most

and pmoc . . . . region-to-region differences are reproduced. The largest dif-

The vectorpmod IS & function (.)f the adjustat?le variable g ences are found in the North Pacific, and in parts of the
Sint. @S iSpmod (except thatpmod iS also a function of fur- .00t Southern Hemisphere % is averaged over

ther adjustable variablegneeand fini, which are irvelevant 0, caan only (not shown), Northern Hemisphere and trop-

now). We can define an analogous costfunction Contrlbut'onical mismatches further reduce, in particular with the essen-

tially perfect match in the temperate North Atlantic.
1 T 1 To be able to judge the match, we set it into perspective
=3 (Pobs— Pmod) Q" (Pobs— Pmod) - (A30) " with two further cases representing situations with less or

) - ) with more available information, respectively:
The covariance matri® , is chosen diagonal as well; the un-

Certainty for every individual pixel with two or more SOCAT — The black line shows the Bayesian prior’ which does not
data points is set to 10 patm (for pixels with a single data yet use any SOCAT or atmospheric data (S2@. The

point to \/E x 10 uatm). The fit to the SOCAT data is then pCOZ Seasona“ty thus just represents a_priori knowl-
done in the same way as to the atmospheric data, jUSt with edge on the response to temperature_induced Changes
Je replaced byJ/, (those degrees of freedom that do not de- in the chemistry (and to lesser extend in solubility,
pend onp,(%O2 — land fluxes and atmospheric initial condition Sect.A2.2). It is opposite in phase compared to the syn-

— are unconstrained in this inversion and just remain at their  thetic truth in high latitudes. The pseudo data are able
a-priori values). to correct this large difference almost completely.
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Pacific 45N-90N Atlantic 45N-90N ity but not contained in our synthetic “truth” potentially
T 425 T

425 deteriorate the performance of our fit to real data).

400 \ /4400
378 f\\% A T The test confirms that the differences between our results
Bor NIAS L N0 ; and Takahashi et al(2009 in the northernmost part of the
2§§ : 232 m e North Pacific are due to the lack of data (see Supplement
Pacific 15N-45N Atlantic 15N-45N Fig. S7.4) in conjunction with spatial variability: Ihaka-
: \ hashi et al(2009, seasonal amplitudes are large in a region
at around 50—-6N and strongly drop going northward (see

375 375t 7 ) ) -
350 _f/\\,__/ 350 v)/\\\J Supplement Fig. S7.1). Though the diagnostic model would

425
400

325 325 3 be able follow the spatial pattern in the climatology if data
300 300 : would say so (green line), in the absence of data it extra-
ifi - lanti - di - - . .
T L et polates the field northward keeping the high seasonal cycle
o w 400 : 400 : from the pixels south of this area.
I L e s L s o Seasonal data coverage is also limiting in the tropi-
350 : 850 : 950 : cal Indian, the other problematic region (see Supplement
325 : 325 : 325 F 874
300 : 300 : 300 ig. S7.4).
Pacific 45S-15S Atlantic 45S-15S Indian 45S-15S
4251 425 m— :
a00f 70 {a00f /o {4001 Appendix C
375 1 375} e PR V.- L
pan s N s : \
350 I NZ N 350 N’ Nasof~_ A . .
~ \f — Calculating phosphate concentrations fromf.2!C
325 : 325 : 325 : int
300 i 300 i 300

Pacific 905-455 Atlantic 90S-45S Indian 90S-45S Considering the ocean-internal processes affecting mixed-

layer concentrations of biogeochemical tracers, carbon
275 Jasl— A — Jars addition/removal occurs both through biological respira-
350 ‘ 350 /%\\J/ 350 : tion/photosynthesis in the mixed layer and through mixing-in
325 i 325 i 325 § of water masses with higher/lower carbon concentration. In
300 ‘ 300 : 300 ‘ the second case, in turn, there is a contribution from the pre-
Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul . .. .
formed carbon concentration originating from the last con-

425 ‘ 425 ‘ 425
400 : 400 : 400

Fig. B1. Testing the capacity to retrieve th€©z field from the ~ tact of the arriving water parcel with the atmosphere, and a

SOCAT data set: fit of the diagnostic scheme tofé* field sim-  contribution from carbon added to the water parcel along its
ulated by the PlankTOMS5 biogeochemical modgligenhuis etal.  way through the ocean interior by remineralization.

2010 (combined with seasonality fromiakahashi et al(2009) The biological contribution to the sources and sinks of car-
sub-sampled at Iogations/times_of the SOCAT measurements (bluepon (both in the mixed layer and the ocean interior) is directly
compared to the SImU'a'[QIFOZ field itself (“known truth”, V|O|et). linked to sources and sinks of phosphate, and assumed to pro-

ery grid cell and time step (“complete information”, green) and the
Bayesian prior (“no data information”, thin dashed grey, partially
off-scale) is given. TheC©2 fields have been averaged over the
regions as in Fig7.

proportional to the differences between the pre-formed car-
bon (or nutrient) concentrations of arriving water parcels and
those of the destination mixed-layer. Considering only their
variability as relevant here, these differences are assumed to
be either small or close to Redfield proportions as well (this is
equivalent to assuming that the internal sources/sinks of the
tracerCRIC* = CPIC _ yc.oCh® (Gloor et al, 2003 have no

— We also did the retrieval based on maximum informa- variability). Then the variations of ocean-internal phosphate

tion about thep©®2 field available, by constraining the gources and sinkg‘iﬁto“) are proportional to the variations of

scheme at every grid point and time step, not only where :bic \ye thys calculated the potential seasonal changes in

; : int
actual SOCAT data exist. The result (green) fits the o mixed-layer P@concentration using a Pudget equa-

known truth almost perfectly, showing that there are suf- 4, -« Eq. A18) (including history and freshwater fluxes),

Iir?(;er?:eienggzzz g;;lr_(taedHo(r)n ig (t;e :Sc?ﬁénsetr?oﬁ]o;ﬂggcgexcept that (1) the ocean-internal flux was reduced by the
'1y. MOWEVe, field ratio (- = £P'/rc.p), (2) the long-term mean
the SOCAT-sampled pseudo data is only slightly worse, edfield ratio (i Pé‘”t /rep), (2) the long-te ea

we conclude that the SOCAT data density is essentiallyV@S subtracte%gomfim , and (3) there was no sea—air flux
sufficient to constrain the seasonality of surface-ocearPf phosphate fma* = 0). As the initial condition for the bud-
biogeochemistry on the scale of the considered regiongeét equation is unknown and phosphate does not relax to-

(note that strong modes of variability existing in real- wards an atmospheric value, calcula@f{:q04 contains an ar-
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bitrary offset, such that we only compare the deviation fromChen, L., Xu, S., Gao, Z., Chen, H., Zhang, Y., Zhan, J., and Li, W.:
the temporal mean. Estimation of monthly air-sea CCflux in the southern Atlantic
and Indian Ocean using in-situ and remotely sensed data, Remote
Sens. Environ., 115, 1935-1941, 2011.
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