32 research outputs found

    Estimating species relative abundances from museum records

    Get PDF
    Funding: C.F., U.B. and D.J.R. acknowledge COST Action ‘European Soil-Biology Data Warehouse for Soil Protection’ (EUdaphobase), CA18237, supported by COST (European Cooperation in Science and Technology). AEM thanks the Leverhulme Trust (RPG-2019-401). D.B.B. was supported by an NSF Postdoc Research Fellowship in Biology (NSF 000733206), S.M.R. was supported by an NSERC Discovery Grant Author Contributions, A.V.S. was supported by NSF 1755336, C.S.M was supported by NSF 1398620 and N.J.G was supported by NSF 2019470.1. Dated, geo-referenced museum specimens are a rich data source for reconstructing species' distribution and abundance patterns. However, museum records are potentially biased towards over-representation of rare species, and it is unclear whether museum records can be used to estimate relative abundance in the field. 2. We assembled 17 coupled field and museum datasets to quantitatively compare relative abundance estimates with the Dirichlet distribution. Collectively, these datasets comprise 73,039 museum records and 1,405,316 field observations of 2,240 species. 3. Although museum records of rare species overestimated relative abundance by 1-fold to over 100-fold (median study = 9.0), the relative abundance of species estimated from museum occurrence records was strongly correlated with relative abundance estimated from standardized field surveys (r2 range of 0.10-0.91, median study = 0.43). 4. These analyses provide a justification for estimating species relative abundance with carefully curated museum occurrence records, which may allow for the detection of temporal or spatial shifts in the rank ordering of common and rare species.Publisher PDFPeer reviewe

    Ecological changes in historically polluted soils: Metal(loid) bioaccumulation in microarthropods and their impact on community structure

    Get PDF
    International audienceSoil pollution by persistent metal(loid)s present environmental and sanitary risks. While the effects of metal(loid)s on vegetation and macrofauna have been widely studied, their impact on microarthropods (millimetre scale) and their bioaccumulation capacity have been less investigated. However, microarthropods provide important ecosystem services, contributing in particular to soil organic matter dynamics. This study focussed on the impact of metal(loid) pollution on the structure and distribution of microarthropod communities and their potential to bioaccumulate lead (Pb). Soil samples were collected from a contaminated historical site with a strong horizontal and vertical gradient of Pb concentrations. Microarthropods were extracted using the Berlese method. The field experiments showed that microarthropods were present even in extremely polluted soils (30,000 mg Pb kg− 1). However, while microarthropod abundance increased with increasing soil C/N content (R2 = 0.79), richness decreased with increasing pollution. A shift in the community structure from an oribatid-to a springtail-dominated community was observed in less polluted soils (R2 = 0.68). In addition, Pb bioamplification occurred in microarthropods, with higher Pb concentrations in predators than in detritivorous microarthropods. Finally, the importance of feeding and reproductive ecological traits as potentially relevant descriptors of springtail community structures was highlighted. This study demonstrates the interest of microarthropod communities with different trophic levels and ecological features for evaluating the global environmental impact of metal(loid) pollution on soil biological quality

    Incisional hernia following colorectal cancer surgery according to suture technique: Hughes Abdominal Repair Randomized Trial (HART).

    Get PDF
    BACKGROUND: Incisional hernias cause morbidity and may require further surgery. HART (Hughes Abdominal Repair Trial) assessed the effect of an alternative suture method on the incidence of incisional hernia following colorectal cancer surgery. METHODS: A pragmatic multicentre single-blind RCT allocated patients undergoing midline incision for colorectal cancer to either Hughes closure (double far-near-near-far sutures of 1 nylon suture at 2-cm intervals along the fascia combined with conventional mass closure) or the surgeon's standard closure. The primary outcome was the incidence of incisional hernia at 1 year assessed by clinical examination. An intention-to-treat analysis was performed. RESULTS: Between August 2014 and February 2018, 802 patients were randomized to either Hughes closure (401) or the standard mass closure group (401). At 1 year after surgery, 672 patients (83.7 per cent) were included in the primary outcome analysis; 50 of 339 patients (14.8 per cent) in the Hughes group and 57 of 333 (17.1 per cent) in the standard closure group had incisional hernia (OR 0.84, 95 per cent c.i. 0.55 to 1.27; P = 0.402). At 2 years, 78 patients (28.7 per cent) in the Hughes repair group and 84 (31.8 per cent) in the standard closure group had incisional hernia (OR 0.86, 0.59 to 1.25; P = 0.429). Adverse events were similar in the two groups, apart from the rate of surgical-site infection, which was higher in the Hughes group (13.2 versus 7.7 per cent; OR 1.82, 1.14 to 2.91; P = 0.011). CONCLUSION: The incidence of incisional hernia after colorectal cancer surgery is high. There was no statistical difference in incidence between Hughes closure and mass closure at 1 or 2 years. REGISTRATION NUMBER: ISRCTN25616490 (http://www.controlled-trials.com)

    Globally invariant metabolism but density-diversity mismatch in springtails.

    Get PDF
    Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning

    Global fine-resolution data on springtail abundance and community structure

    Get PDF
    Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.</p
    corecore