29 research outputs found

    The spectroscopic binary system Gl 375. I. Orbital parameters and chromospheric activity

    Full text link
    We study the spectroscopic binary system Gl 375. We employ medium resolution echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory CASLEO and photometric observations obtained from the ASAS database. We separate the composite spectra into those corresponding to both components. The separated spectra allow us to confirm that the spectral types of both components are similar (dMe3.5) and to obtain precise measurements of the orbital period (P = 1.87844 days), minimum masses (M_1 sin^3 i = 0.35 M_sun and M_2 sin^3 i =0.33 M_sun) and other orbital parameters. The photometric observations exhibit a sinusoidal variation with the same period as the orbital period. We interpret this as signs of active regions carried along with rotation in a tidally synchronized system, and study the evolution of the amplitude of the modulation in longer timescales. Together with the mean magnitude, the modulation exhibits a roughly cyclic variation with a period of around 800 days. This periodicity is also found in the flux of the Ca II K lines of both components, which seem to be in phase. The periodic changes in the three observables are interpreted as a sign of a stellar activity cycle. Both components appear to be in phase, which implies that they are magnetically connected. The measured cycle of approximately 2.2 years (800 days) is consistent with previous determinations of activity cycles in similar stars.Comment: 10 pages, including 11 figures and 3 tables. Accepted for publication in Astronomy & Astrophysic

    Fluxes in H\alpha and Ca II H and K for a sample of Southern stars

    Get PDF
    The main chromospheric activity indicator is the S index, which is esentially the ratio of the flux in the core of the Ca II H and K lines to the continuum nearby, and is well studied basically for stars from F to K. Another usual chromospheric proxy is the H\alpha line, which is beleived to be tightly correlated with the Ca II index. In this work we characterize both chromospheric activity indicators, one associated with the H and K Ca II lines and the other with H\alpha, for the whole range of late type stars, from F to M. We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed along 7 years. We use a total of 917 flux-calibrated spectra for 109 stars which range from F6 to M5. We statistically study these two indicators for stars of different activity levels and spectral types. We directly derive the conversion factor which translate the known S index to flux in the Ca II cores, and extend its calibration to a wider spectral range. We investigate the relation between the activity measurements in the calcium and hydrogen lines, and found that the usual correlation observed is basically the product of the dependence of each flux with stellar colour, and not the product of similar activity phenomena.Comment: 12 pages, including 11 figures and 2 tables. Accepted for publication in Astronomy and Astrophysic

    Do stellar magnetic cycles influence the measurement of precise radial velocities?

    Full text link
    The ever increasing level of precision achieved by present and future radial-velocity instruments is opening the way to discovering very low-mass, long-period planets (e.g. solar-system analogs). These systems will be detectable as low-amplitude signals in radial-velocity (RV). However, an important obstacle to their detection may be the existence of stellar magnetic cycles on similar timescales. Here we present the results of a long-term program to simultaneously measure radial-velocities and stellar-activity indicators (CaII, H_alpha, HeI) for a sample of stars with known activity cycles. Our results suggest that all these stellar activity indexes can be used to trace the stellar magnetic cycle in solar-type stars. Likewise, we find clear indications that different parameters of the HARPS cross-correlation function (BIS, FWHM, and contrast) are also sensitive to activity level variations. Finally, we show that, although in a few cases slight correlations or anti-correlations between radial-velocity and the activity level of the star exist, their origin is still not clear. We can, however, conclude that for our targets (early-K dwarfs) we do not find evidence of any radial-velocity variations induced by variations of the stellar magnetic cycle with amplitudes significantly above ~1 m/s.Comment: Accepted for publication in A&A (revised version following minor language corrections

    Multi-wavelength observations of Proxima Centauri

    Full text link
    We report simultaneous observations of the nearby flare star Proxima Centauri with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and X-ray observations cover the star's quiescent state, as well as its flaring activity and allow us to probe the stellar atmospheric conditions from the photosphere into the chromosphere, and then the corona during its different activity stages. Using the X-ray data, we investigate variations in coronal densities and abundances and infer loop properties for an intermediate-sized flare. The optical data are used to investigate the magnetic field and its possible variability, to construct an emission line list for the chromosphere, and use certain emission lines to construct physical models of Proxima Centauri's chromosphere. We report the discovery of a weak optical forbidden Fe xiii line at 3388 AA during the more active states of Proxima Centauri. For the intermediate flare, we find two secondary flare events that may originate in neighbouring loops, and discuss the line asymmetries observed during this flare in H i, He i, and Ca ii lines. The high time-resolution in the H alpha line highlights strong temporal variations in the observed line asymmetries, which re-appear during a secondary flare event. We also present theoretical modelling with the stellar atmosphere code PHOENIX to construct flaring chromospheric models.Comment: 19 pages, 22 figures, accepted by A&

    A possible activity cycle in Proxima Centauri

    Get PDF
    Several late-type stars present activity cycles resembling the Solar one. This fact has been observed mostly in stars ranging from F to K, i.e., in stars with a radiative core and an outer convective layer. This work aims at studying whether an activity cycle can be detected in the dM5.5e star Proxima Centauri, which is supposed to be completely convective. We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed over 7 years. We discarded the spectra that present flare activity, and analyze the remaining activity levels using four different statistical techniques to look for a period of activity. We find strong evidence of a cyclic activity, with a period of around 442 days. We also estimate that the Ca II S index varies around 130% due to activity variations outside of flares.Comment: 7 pages, including 8 figures and 2 table

    Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program II. Activity and radial velocity

    Full text link
    Due to their low mass and luminosity, M dwarfs are ideal targets if one hopes to find low-mass planets similar to Earth by using the radial velocity (RV) method. However, stellar magnetic cycles could add noise or even mimic the RV signal of a long-period companion. Following our previous work that studied the correlation between activity cycles and long-term RV variations for K dwarfs we now expand that research to the lower-end of the main sequence. Our objective is to detect any correlations between long-term activity variations and the observed RV of a sample of M dwarfs. We used a sample of 27 M-dwarfs with a median observational timespan of 5.9 years. The cross-correlation function (CCF) with its parameters RV, bisector inverse slope (BIS), full-width-at-half- maximum (FWHM) and contrast have been computed from the HARPS spectrum. The activity index have been derived using the Na I D doublet. These parameters were compared with the activity level of the stars to search for correlations. We detected RV variations up to ~5 m/s that we can attribute to activity cycle effects. However, only 36% of the stars with long-term activity variability appear to have their RV affected by magnetic cycles, on the typical timescale of ~6 years. Therefore, we suggest a careful analysis of activity data when searching for extrasolar planets using long-timespan RV data.Comment: 20 pages, 12 figures, 3 tables, accepted for publication in Astronomy and Astophysic

    Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program I. Comparison of activity indices

    Full text link
    Aims. Other stars are known to have magnetic cycles similar to that of the Sun. The relationship between these activity variations and the observed radial-velocity is still not satisfactorily understood. In this first paper our aim is to assess the long-term activity variations in the low end of the main sequence, having in mind a planetary search perspective. Methods. We used a sample of 30 M0-M5.5 stars from the HARPS M-dwarf planet search program with a median timespan of observations of 5.2 years. We computed chromospheric activity indicators based on the Ca II H and K, H{\alpha}, He I D3, and Na I D1 and D2 lines. All data were binned in to average out undesired effects such as rotationally modulated atmospheric inhomogeneities. We searched for long-term variability of each index and determined the correlations between them. Results. While the S_CaII, H{\alpha}, and Na I indices showed significant variability for a fraction of our stellar sample (39%, 33%, and 37%, respectively), only 10% of our stars presented significant variability in the He i index. We therefore conclude that this index is a poor activity indicator at least for this type of stars. Although the H{\alpha} shows good correlation with S_Ca II for the most active stars, the correlation is lost when the activity level decreases. This result appears to indicate that the Ca II-H{\alpha} correlation is dependent on the activity level of the star. The Na I lines correlate very well with the S_Ca II index for the stars with low activity levels we used, and are thus a good chromospheric activity proxy for early-M dwarfs. We therefore strongly recommend the use of the Na I activity index because the signal-to-noise ratio in the sodium lines spectral region is always higher than for the calcium lines.Comment: 17 pages, 13 figures, 4 tables, accepted for publication in A&

    Chromospheric changes in K stars with activity

    Full text link
    We study the differences in chromospheric structure induced in K stars by stellar activity, to expand our previous work for G stars, including the Sun as a star. We selected six stars of spectral type K with 0.82<BV<<B-V<0.90, including the widely studied Epsilon Eridani and a variety of magnetic activity levels. We computed chromospheric models for the stars in the sample, in most cases in two different moments of activity. The models were constructed to obtain the best possible match with the Ca II K and the Hβ\beta observed profiles. We also computed in detail the net radiative losses for each model to constrain the heating mechanism that can maintain the structure in the atmosphere. We find a strong correlation between these losses and \Sc, the index generally used as a proxy for activity, as we found for G stars

    Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter

    Get PDF
    Context: Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles and their perturbations alter the line centroids creating a radial velocity jitter that might contaminate" the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims: We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d < 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e, CaII H & K lines, to others that hold noteworthy advantages. Methods: We used high resolution (~50000) echelle optical spectra. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R'_HK index. Results: We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity to estimate the expected RV jitter for the active stars in the sample.Comment: Accepted for publication in Astronomy & Astrophysic

    Modelling Chromospheric Line Profiles in NGC2808: Evidence of Mass Loss from RGB Stars

    Get PDF
    In this study we test the possibility that the asymmetry in the profiles of the H-alpha and Ca II K lines in red giant stars is due to the presence of an active chromosphere rather than to mass loss. To this end, we compare line profiles computed using relevant model chromospheres to profiles of the H-alpha and Ca II K lines observed in five red giant stars of the globular cluster NGC 2808. The spectra were taken with FLAMES during Science Verification, using the UVES mode at high resolution (R=43,000) for the H-alpha line, and GIRAFFE in MEDUSA mode (R=20,000) for the Ca II K line. We find that the observed profiles are better described if a negative (outward) velocity field is included in the model chromospheres. This leads to mass loss rates of a few 10**(-9) solar masses per year, very close to the requirements of the stellar evolution theory.Comment: LaTeX v5.2, 9 pages, 10 Postscript figures, to be published in Astronomy & Astrophysic
    corecore