104 research outputs found
Status, sources and contamination levels of organochlorine pesticide residues in urban and agricultural areas: a preliminary review in central–southern Italian soils
Organochlorine pesticides (OCPs) are synthetic chemicals commonly used in agricultural activities to kill pests and are persistent organic pollutants (POPs). They can be detected in different environmental media, but soil is considered an important reservoir due to its retention capacity. Many different types of OCPs exist, which can have different origins and pathways in the environment. It is therefore important to study their distribution and behaviour in the environment, starting to build a picture of the potential human health risk in different contexts. This study aimed at investigating the regional distribution, possible sources and contamination levels of 24 OCP compounds in urban and rural soils from central and southern Italy. One hundred and forty-eight topsoil samples (0–20 cm top layer) from 78 urban and 70 rural areas in 11 administrative regions were collected and analysed by gas chromatography–electron capture detector (GC–ECD). Total OCP residues in soils ranged from nd (no detected) to 1043 ng/g with a mean of 29.91 ng/g and from nd to 1914 ng/g with a mean of 60.16 ng/g in urban and rural area, respectively. Endosulfan was the prevailing OCP in urban areas, followed by DDTs, Drins, Methoxychlor, HCHs, Chlordane-related compounds and HCB. In rural areas, the order of concentrations was Drins > DDTs > Methoxychlor > Endosulfans > HCHs > Chlordanes > HCB. Diagnostic ratios and robust multivariate analyses revealed that DDT in soils could be related to historical application, whilst (illegal) use of technical DDT or dicofol may still occur in some urban areas. HCH residues could be related to both historical use and recent application, whilst there was evidence that modest (yet significant) application of commercial technical HCH may still be happening in urban areas. Drins and Chlordane compounds appeared to be mostly related to historical application, whilst Endosulfan presented a complex mix of results, indicating mainly historical origin in rural areas as well as potential recent applications on urban areas. Contamination levels were quantified by Soil Quality Index (SoQI), identifying high levels in rural areas of Campania and Apulia, possibly due to the intensive nature of some agricultural practices in those regions (e.g., vineyards and olive plantations). The results from this study (which is in progress in the remaining regions of Italy) will provide an invaluable baseline for OCP distribution in Italy and a powerful argument for follow-up studies in contaminated areas. It is also hoped that similar studies will eventually constitute enough evidence to push towards an institutional response for more adequate regulation as well as a full ratification of the Stockholm Convention
To stimulate or not to stimulate? A rapid systematic review of repetitive sensory stimulation for the upper-limb following stroke
Abstract: Background: Repetitive sensory stimulation (RSS) is a therapeutic approach which involves repeated electrical stimulation of the skin’s surface to improve function. This rapid systematic review aimed to describe the current evidence for repetitive sensory stimulation (RSS) in rehabilitation of the upper-limb for people who have had a stroke. Main text: Methods: Relevant studies were identified in a systematic search of electronic databases and hand-searching in February 2020. The findings of included studies were synthesized to describe: the safety of RSS, in whom and when after stroke it has been used, the doses used and its effectiveness. Results: Eight studies were included. No serious adverse events were reported. The majority of studies used RSS in participants with mild or moderate impairments and in the chronic stage after stroke. Four studies used RSS in a single treatment session, reporting significant improvements in strength and hand function. Findings from longitudinal studies showed few significant differences between control and experimental groups. Meta-analysis was not possible due to the heterogeneity of included studies. Conclusions: This review suggests that there is insufficient evidence to support the use of RSS for the upper-limb after stroke in clinical practice. However, this review highlights several clear research priorities including establishing the mechanism and in whom RSS may work, its safety and optimal treatment parameters to improve function of the upper-limb after stroke
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation
Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA methylation or Foxp3 binding sites were associated with Treg-specific gene expression. We found that Treg-specific DNA hypomethylated regions were closely associated with Treg up-regulated transcriptional start site clusters, whereas Foxp3 binding regions had no significant correlation with either up- or down-regulated clusters in nonactivated Treg cells. However, in activated Treg cells, Foxp3 binding regions showed a strong correlation with down-regulated clusters. In accordance with these findings, the above two features of activation-dependent gene regulation in Treg cells tend to occur at different locations in the genome. The results collectively indicate that Treg-specific DNA hypomethylation is instrumental in gene up-regulation in steady state Treg cells, whereas Foxp3 down-regulates the expression of its target genes in activated Treg cells. Thus, the two events seem to play distinct but complementary roles in Treg-specific gene expression
Plasma scenarios, equilibrium configurations and control in the design of FAST
The Fusion Advanced Studies Torus (FAST) conceptual study has been proposed [A. Pizzuto on behalf of the Italian Association, The Fusion Advanced Studies Torus (FAST): a proposal for an ITER Satellite facility in support of the development of fusion energy, in: Proceedings of 22nd IAEA Fusion Energy Conference, Geneva, Switzerland, October 13-18, 2008; Nucl. Fusion, submitted for publication] as possible European ITER Satellite facility with the aim of preparing ITER operation scenarios and helping DEMO design and R&D. Insights into ITER regimes of operation in deuterium plasmas can be obtained from investigations of non linear dynamics that are relevant for the understanding of alpha particle behaviours in burning plasmas by using fast ions accelerated by heating and current drive systems. FAST equilibrium configurations have been designed in order to reproduce those of ITER with scaled plasma current, but still suitable to fulfil plasma conditions for studying burning plasma physics issues in an integrated framework. In this paper we report the plasma scenarios that can be studied on FAST, with emphasis on the aspect of its flexibility in terms of both performance and physics that can be investigated. All plasma equilibria satisfy the following constraints: (a) minimum distance of 3 energy e-folding length (assumed to be 1 cm on the equatorial plane) between plasma and first wall to avoid interaction between plasma and main chamber; (b) maximum current density in the poloidal field coils, transiently, up to around 30 MA/m2. The discharge duration is always limited by the heating of the toroidal field coils that are inertially cooled by helium gas at 30 K. The location of the poloidal field coils has been optimized in order to: minimize the magnetic energy; produce enough magnetic flux (up to 35 Wb stored) for the formation and sustainment of each scenario; produce a good field null at the plasma break-down (BP/BT < 2 × 10-4 at low field, i.e. BT = 4 T and ET = 2 V/m for at least 40 ms). Plasma position and shape control studies will also be presented. The optimization of the passive shell position slows the vertical stability growth time down to 100 m
System-Level Optimization of ITER Magnetic Diagnostics: Preliminary Results
The present accuracy requirements on ITER parameters to be obtained primarily from magnetic measurements are demanding and, in many situations, they might be approached but not necessarily achieved with the parameter estimation process currently foreseen. In such cases, it is desirable to improve the estimation process, where possible, to achieve adequate performance. Where the accuracy requirements are still not achieved, the requirements will need to be qualified. This could mean acceptance of increased errors for conditions not impairing machine performance unacceptably, a reduction in operational space of applicability of accuracy requirements (e.g. for the diamagnetic poloidal beta measurement), separation of acceptable dynamic from static errors (e.g. for plasma-wall gap measurements) and separation of acceptable systematic from random errors (e.g. random errors due to plasma generated noise). Modification of the parameter estimation process could include use of magnetic sensors with increased performance (implying increased development time and cost), optimization of the number and position of the magnetic sensors, partial compensation of pick-up from ferromagnetic materials, estimation and partial compensation of pick-up from eddy currents. The first step of improving the ITER magnetic diagnostic specification is an assessment of the plasma parameter estimation accuracies obtainable with the present design of the system. This paper aims at presenting the analysis results with respect to plasma current, plasma-wall gaps and plasma current centroid vertical velocity. Moreover, preliminary results on the reconstruction of TAE perturbations are presented. Although previous work in this area has been reported, this is the first study combining the complete baseline ITER magnetics diagnostic with a realistic and detailed description of the ITER machine, in 3D
- …