873 research outputs found
Application of digital control to a magnetic model suspension and balance model
The feasibility of using a digital computer for performing the automatic control functions for a magnetic suspension and balance system (MSBS) for use with wind tunnel models was investigated. Modeling was done using both a prototype MSBS and a one dimensional magnetic balance. A microcomputer using the Intel 8080 microprocessor is described and results are given using this microprocessor to control the one dimensional balance. Hybrid simulations for one degree of freedom of the MSBS were also performed and are reported. It is concluded that use of a digital computer to control the MSBS is eminently feasible and should extend both the accuracy and utility of the system
Development of closed loop roll control for magnetic balance systems
This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom
Application of superconducting coils to the NASA prototype magnetic balance
Application of superconducting coils to a general purpose magnetic balance was studied. The most suitable currently available superconducting cable for coils appears to be a bundle of many fine wires which are transposed and are mechanically confined. Sample coils were tested at central fields up to .5 Tesla, slewing rates up to 53 Tesla/ sec and frequencies up to 30 Hz. The ac losses were measured from helium boil-off and were approximately 20% higher than those calculated. Losses were dominated by hysteresis and a model for loss calculation which appears suitable for design purposes is presented along with computer listings. Combinations of two coils were also tested and interaction losses are reported. Two feasible geometries are also presented for prototype magnetic balance using superconductors
Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis
Natronomonas pharaonis is an archaeon adapted to two extreme conditions: high salt concentration and alkaline pH. It has become one of the model organisms for the study of extremophilic life. Here, we present a genome-scale, manually curated metabolic reconstruction for the microorganism. The reconstruction itself represents a knowledge base of the haloalkaliphile's metabolism and, as such, would greatly assist further investigations on archaeal pathways. In addition, we experimentally determined several parameters relevant to growth, including a characterization of the biomass composition and a quantification of carbon and oxygen consumption. Using the metabolic reconstruction and the experimental data, we formulated a constraints-based model which we used to analyze the behavior of the archaeon when grown on a single carbon source. Results of the analysis include the finding that Natronomonas pharaonis, when grown aerobically on acetate, uses a carbon to oxygen consumption ratio that is theoretically near-optimal with respect to growth and energy production. This supports the hypothesis that, under simple conditions, the microorganism optimizes its metabolism with respect to the two objectives. We also found that the archaeon has a very low carbon efficiency of only about 35%. This inefficiency is probably due to a very low P/O ratio as well as to the other difficulties posed by its extreme environment
Harmonic Analysis of Boolean Networks: Determinative Power and Perturbations
Consider a large Boolean network with a feed forward structure. Given a
probability distribution on the inputs, can one find, possibly small,
collections of input nodes that determine the states of most other nodes in the
network? To answer this question, a notion that quantifies the determinative
power of an input over the states of the nodes in the network is needed. We
argue that the mutual information (MI) between a given subset of the inputs X =
{X_1, ..., X_n} of some node i and its associated function f_i(X) quantifies
the determinative power of this set of inputs over node i. We compare the
determinative power of a set of inputs to the sensitivity to perturbations to
these inputs, and find that, maybe surprisingly, an input that has large
sensitivity to perturbations does not necessarily have large determinative
power. However, for unate functions, which play an important role in genetic
regulatory networks, we find a direct relation between MI and sensitivity to
perturbations. As an application of our results, we analyze the large-scale
regulatory network of Escherichia coli. We identify the most determinative
nodes and show that a small subset of those reduces the overall uncertainty of
the network state significantly. Furthermore, the network is found to be
tolerant to perturbations of its inputs
Some Additive Combinatorics Problems in Matrix Rings
We study the distribution of singular and unimodular matrices in sumsets in
matrix rings over finite fields. We apply these results to estimate the largest
prime divisor of the determinants in sumsets in matrix rings over the integers
Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns
The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m
A forward genetic screen identifies host factors that influence the lysis-lysogeny decision in phage lambda
The lysis‐lysogeny decision made by bacteriophage lambda is one of the classic problems of molecular biology. Shortly after infecting a cell, the virus can either go down the lytic pathway and make more viruses, or go down the lysogenic pathway and integrate itself into the host genome. While much is known about how this decision takes place, the extent to which host physiology influences this decision and the mechanisms by which this influence takes place has remained mysterious. To answer this question, we performed a forward genetic screen to systematically identify all of the genes in E. coli that influence the lysis‐lysogeny decision. Our results demonstrate previously unknown links between host physiology and viral decision making and shed new light on this classic system
Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models
Advances in sequencing technology are resulting in the rapid emergence of large numbers of complete genome sequences. High throughput annotation and metabolic modeling of these genomes is now a reality. The high throughput reconstruction and analysis of genome-scale transcriptional regulatory networks represents the next frontier in microbial bioinformatics. The fruition of this next frontier will depend upon the integration of numerous data sources relating to mechanisms, components, and behavior of the transcriptional regulatory machinery, as well as the integration of the regulatory machinery into genome-scale cellular models. Here we review existing repositories for different types of transcriptional regulatory data, including expression data, transcription factor data, and binding site locations, and we explore how these data are being used for the reconstruction of new regulatory networks. From template network based methods to de novo reverse engineering from expression data, we discuss how regulatory networks can be reconstructed and integrated with metabolic models to improve model predictions and performance. Finally, we explore the impact these integrated models can have in simulating phenotypes, optimizing the production of compounds of interest or paving the way to a whole-cell model.J.P.F. acknowledges funding from [SFRH/BD/70824/2010] of the FCT (Portuguese Foundation for Science and Technology) PhD program. The work was supported in part by the ERDF—European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness), National Funds through the FCT within projects [FCOMP-01-0124-FEDER015079] (ToMEGIM—Computational Tools for Metabolic Engineering using Genome-scale Integrated Models) and FCOMP-01-0124-FEDER009707 (HeliSysBio—molecular Systems Biology in Helicobacter pylori), the U.S. Department of Energy under contract [DE-ACO2-06CH11357] and the National Science Foundation under [0850546]
Quantifying wet scavenging processes in aircraft observations of nitric acid and cloud condensation nuclei
Wet scavenging is an important sink term for many atmospheric constituents. However, production of precipitation in clouds is poorly understood, and pollutant removal through wet scavenging is difficult to separate from removal through dry scavenging, atmospheric mixing, or chemical transformations. Here we use airborne data from the International Consortium for Atmospheric Research on Transport and Transformation project to show that measured ratios of soluble and insoluble trace gases provide a useful indicator for quantifying wet scavenging. Specifically, nitric acid (HNO3), produced as a by-product of combustion, is highly soluble and removed efficiently from clouds by rain. Regional carbon monoxide (CO), which is also an indicator of anthropogenic activity, is insoluble and has a lifetime against oxidation of about a month. We find that relative concentrations of HNO3 to regional CO observed in clear air are negatively correlated with precipitation production rates in nearby cloudy air (r2 = 0.85). Also, we show that relative concentrations of HNO3 and CO can be used to quantify cloud condensation nucleus (CCN) scavenging by precipitating clouds. This is because CCN and HNO3 molecules are both fully soluble in cloud water and hence can be treated as analogous species insofar as wet scavenging is concerned. While approximate, the practical advantage of this approach to scavenging studies is that it requires only measurement in clear air and no a priori knowledge of the cloud or aerosol properties involved
- …
