322 research outputs found

    The large-spin asymptotics of the ferromagnetic XXZ chain

    Full text link
    We present new results and give a concise review of recent previous results on the asymptotics for large spin of the low-lying spectrum of the ferromagnetic XXZ Heisenberg chain with kink boundary conditions. Our main interest is to gain detailed information on the interface ground states of this model and the low-lying excitations above them. The new and most detailed results are obtained using a rigorous version of bosonization, which can be interpreted as a quantum central limit theorem.Comment: 30 pages, submitted to the proceedings of the workshop "Low-energy states in quantum many-body systems", 29 January 2003, Cergy-Pontois

    Central limit theorems for the large-spin asymptotics of quantum spins

    Full text link
    We use a generalized form of Dyson's spin wave formalism to prove several central limit theorems for the large-spin asymptotics of quantum spins in a coherent state.Comment: 28 pages, uses package amsref

    Restricted maximum-likelihood method for learning latent variance components in gene expression data with known and unknown confounders

    Get PDF
    Random effect models are popular statistical models for detecting and correcting spurious sample correlations due to hidden confounders in genome-wide gene expression data. In applications where some confounding factors are known, estimating simultaneously the contribution of known and latent variance components in random effect models is a challenge that has so far relied on numerical gradient-based optimizers to maximize the likelihood function. This is unsatisfactory because the resulting solution is poorly characterized and the efficiency of the method may be suboptimal. Here we prove analytically that maximum-likelihood latent variables can always be chosen orthogonal to the known confounding factors, in other words, that maximum-likelihood latent variables explain sample covariances not already explained by known factors. Based on this result we propose a restricted maximum-likelihood method which estimates the latent variables by maximizing the likelihood on the restricted subspace orthogonal to the known confounding factors, and show that this reduces to probabilistic PCA on that subspace. The method then estimates the variance-covariance parameters by maximizing the remaining terms in the likelihood function given the latent variables, using a newly derived analytic solution for this problem. Compared to gradient-based optimizers, our method attains greater or equal likelihood values, can be computed using standard matrix operations, results in latent factors that don't overlap with any known factors, and has a runtime reduced by several orders of magnitude. Hence the restricted maximum-likelihood method facilitates the application of random effect modelling strategies for learning latent variance components to much larger gene expression datasets than possible with current methods.Comment: 15 pages, 4 figures, 3 supplementary figures, 19 pages supplementary methods; minor revision with expanded Discussion sectio

    Mathematical Structure of Magnons in Quantum Ferromagnets

    Get PDF
    We provide the mathematical structure and a simple, transparent and rigorous derivation of the magnons as elementary quasi-particle excitations at low temperatures and in the infinite spin limit for a large class of Heisenberg ferromagnets. The magnon canonical variables are obtained as fluctuation operators in the infinite spin limit. Their quantum character is governed by the size of the magnetization

    Fluctuation Operators and Spontaneous Symmetry Breaking

    Full text link
    We develop an alternative approach to this field, which was to a large extent developed by Verbeure et al. It is meant to complement their approach, which is largely based on a non-commutative central limit theorem and coordinate space estimates. In contrast to that we deal directly with the limits of ll-point truncated correlation functions and show that they typically vanish for l≥3l\geq 3 provided that the respective scaling exponents of the fluctuation observables are appropriately chosen. This direct approach is greatly simplified by the introduction of a smooth version of spatial averaging, which has a much nicer scaling behavior and the systematic developement of Fourier space and energy-momentum spectral methods. We both analyze the regime of normal fluctuations, the various regimes of poor clustering and the case of spontaneous symmetry breaking or Goldstone phenomenon.Comment: 30 pages, Latex, a more detailed discussion in section 7 as to possible scaling behavior of l-point function

    Analysis of a Gibbs sampler method for model based clustering of gene expression data

    Full text link
    Over the last decade, a large variety of clustering algorithms have been developed to detect coregulatory relationships among genes from microarray gene expression data. Model based clustering approaches have emerged as statistically well grounded methods, but the properties of these algorithms when applied to large-scale data sets are not always well understood. An in-depth analysis can reveal important insights about the performance of the algorithm, the expected quality of the output clusters, and the possibilities for extracting more relevant information out of a particular data set. We have extended an existing algorithm for model based clustering of genes to simultaneously cluster genes and conditions, and used three large compendia of gene expression data for S. cerevisiae to analyze its properties. The algorithm uses a Bayesian approach and a Gibbs sampling procedure to iteratively update the cluster assignment of each gene and condition. For large-scale data sets, the posterior distribution is strongly peaked on a limited number of equiprobable clusterings. A GO annotation analysis shows that these local maxima are all biologically equally significant, and that simultaneously clustering genes and conditions performs better than only clustering genes and assuming independent conditions. A collection of distinct equivalent clusterings can be summarized as a weighted graph on the set of genes, from which we extract fuzzy, overlapping clusters using a graph spectral method. The cores of these fuzzy clusters contain tight sets of strongly coexpressed genes, while the overlaps exhibit relations between genes showing only partial coexpression.Comment: 8 pages, 7 figure
    • …
    corecore