
Genome-scale bacterial transcriptional
regulatory networks: reconstruction
and integrated analysis with metabolic
models
Jose¤ P. Faria, Ross Overbeek, Fangfang Xia, Miguel Rocha, Isabel Rocha and Christopher S. Henry
Submitted: 9th July 2012; Received (in revised form): 9th October 2012

Abstract
Advances in sequencing technology are resulting in the rapid emergence of large numbers of complete genome
sequences. High-throughput annotation and metabolic modeling of these genomes is now a reality. The high-
throughput reconstruction and analysis of genome-scale transcriptional regulatory networks represent the next
frontier in microbial bioinformatics. The fruition of this next frontier will depend on the integration of numerous
data sources relating to mechanisms, components and behavior of the transcriptional regulatory machinery, as
well as the integration of the regulatory machinery into genome-scale cellular models. Here, we review existing
repositories for different types of transcriptional regulatory data, including expression data, transcription factor
data and binding site locations and we explore how these data are being used for the reconstruction of new regula-
tory networks. From template network-basedmethods to de novo reverse engineering from expression data, we dis-
cuss how regulatory networks can be reconstructed and integrated with metabolic models to improve model
predictions and performance. We also explore the impact these integrated models can have in simulating pheno-
types, optimizing the production of compounds of interest or paving the way to a whole-cell model.

Keywords: genome-scale metabolic (GSM) model; transcriptional regulatory network (TRN); de novo reverse engineering;
integrated metabolic and regulatory models

INTRODUCTION
Systems biology has provided numerous tools for

modeling biological systems [1], many of which

depend on the reconstruction of genome-scale meta-

bolic (GSM) models. These models now exist for a

growing number of organisms, including prokary-

otic, archaeal and eukaryotic species [2]. With the

advent of next-generation sequencing, the develop-

ment of GSMs has become routine [2, 3] and many

steps involved in the reconstruction and optimization
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of draft GSMs have been automated [4]. Algorithms

and methods for GSM reconstruction have been re-

viewed in detail elsewhere [5–7].

However, nearly all existing GSMs fail to account

for the impact of gene expression regulation on

metabolic activity. In order to capture the impact

of regulation on the behavior of an organism, a

GSM must integrate some abstraction of regulatory

mechanisms, which include the activity of RNA

polymerase, transcription factors (TFs), promoters,

TF binding sites (TFBSs) and sigma factors. Sigma

factors allow the recognition of the enzyme by the

promoter region, enabling transcription to begin.

TFs bind to specific TFBSs in the promoter region

and can act as activators, repressors or both (dual

regulators). In eukaryotes, TFs are able to perform

other tasks affecting regulation, such as chromatin-

modifying activities [8]. Other elements have been

identified as taking part in the control of transcrip-

tion regulation in bacteria, such as riboswitches [9],

RNA swiches [10], antisense RNA [11] or

microRNAs [12]. Here, we focus on regulation by

TFs, a mechanism illustrated in Figure 1. Also dis-

played are some of the technologies, tools and re-

sources necessary for reconstructing transcriptional

regulatory networks (TRNs).

The integration of these regulatory mechanisms in

GSMs requires methods for the reconstruction and

analysis of TRNs. Once a regulatory model has been

constructed for an organism, it can be integrated

with GSMs to improve predictive accuracy and

reveal new biological insights. For example, some

cellular processes exhibit a dominance of regulatory

mechanisms, affecting their behavior and leading to

incorrect predictions when only metabolism is ac-

counted for [13]. The first genome-scale integrated

metabolic and regulatory model for Escherichia coli
[14] revealed that regulation significantly affects

growth phenotype predictions and these predictions

improved with the addition of regulatory constraints.

Simultaneously, the study of TRNs has unveiled

novel interactions; in Salmonella enterica, 14 regulators

were identified that affect the same genes leading to a

systemic infection [15]. Similar studies led to the dis-

covery of novel regulatory mechanisms in Saccharo-
myces cerevisiae [16].

Here, we review the reconstruction of TRNs and

their integration with metabolic models. First, we

explore the data available for TRN reconstruction,

covering the most prominent databases of expression

data and repositories of TF/TFBS data. Next, we

examine how data availability triggered the develop-

ment of a variety of TRN inference methods,

including reverse engineering from expression data

sets [17–21], network inference from TFBS site data

[22–24] and knowledge-based template methods

[25].

The integration of regulatory and metabolic net-

works for predictive modeling is possible only with

the development of integrated phenotype simulation

methods. The most widely used approach for simu-

lating GSMs is flux balance analysis (FBA) [26]. To

account for regulatory information, FBA was

expanded with new methodologies, including

regulatory FBA (rFBA) [13] and steady-state regula-

tory FBA (SR-FBA) [27]. We review these FBA-

based methodologies, as well as other approaches

that allow for a characterization of alternative

Figure 1: Technologies, tools and resources for transcriptional regulatory network modeling and reconstruction.
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cellular states [28] and for the integration of omics

data [29, 30].

REGULATION DATA FORTRN
RECONSTRUCTIONçFROM
STANDARDSANDTECHNOLOGIES
TODATABASES
The development of microarray technologies gave

rise to a revolution in biomedical research [31],

also bringing new problems such as quality control

of experiments [32] and selection of an appropriate

level of detail [33]. To address these issues, the

Functional Genomics Data Society launched a pro-

posal to standardize the publishing and sharing of

microarray data (MIAME) [34]. The majority of

the community adopted the proposal, requiring au-

thors to follow the MIAME guidelines. Publishers

also required authors to store data [35] in either

NCBIs Gene Expression Omnibus (GEO) [36] or

EBIs ArrayExpress [37], the major public gene ex-

pression data repositories, both MIAME compliant.

These databases integrate data from a variety of

technologies that can help determine regulatory

interactions, although expression profiling and

genome binding and occupancy studies have

become the most prevalent. Expression profiling

techniques vary from the traditional array oligo-

nucleotide hybridization technology for measuring

gene expression level to mRNA quantification

methodologies, such as serial analysis of gene expres-

sion (SAGE) [38, 39] or reverse transcriptase PCR

(RT-PCR). Genome binding and occupancy

experiments have the advantage of identifying the

spots corresponding to DNA–protein binding tar-

gets. Chromatin immunoprecipitation with array hy-

bridization (ChIP-chip) [40, 41] is used to overcome

limitations of common expression profiling. Other

ChIP technologies have also been developed in

combination with different expression techniques

such as SAGE (ChIP-SAGE [42]) to achieve a

particular level of detail, depending on the organism

and tissue studied [43]. With the development of

next-generation sequencing technologies, ChIP-

Seq [44] and RNA-Seq emerged [45, 46]. ChIP-

Seq enables whole-genome ChIP assays, while

RNA-Seq provides a capacity for direct measure-

ment of mRNA, small RNA and non-coding

RNA abundances [47]. ChIP methods have been

widely used to collect expression data from E. coli
[48–50] and, more recently, RNA-Seq methods

have been adjusted for studying bacterial transcrip-

tomes [51, 52]. RNA-Seq has been also successfully

used to detect transcription start sites [53] that can be

used for regulon inference.

Data available for TRN inference can be categor-

ized into two major groups: (i) databases of gene

expression data (including genome binding experi-

mental data) and (ii) databases of TF and TFBS.

Table 1 shows the most notable databases of the

former group.

We surveyed GEO, as the major expression data-

base, gathering statistics on the type of studies con-

ducted, availability of data, quantification of bacterial

data and the most represented microbes (Figure 2).

These statistics clearly indicate that most of the cur-

rent data are from expression profiling, with 18 498

experimental series (85%). Although next-generation

sequencing technologies were introduced recently

[57], we can already see a change in the types of

experiments being performed (Figure 2B). Examin-

ing the organisms for which expression data are avail-

able, we find that only 7% of data sets are from

bacteria (Figure 2C), with E. coli being the most rep-

resented prokaryote (Figure 2D).

Table 1 also includes other notable databases, from

which we highlight the Many Microbe Microarrays

database [54] currently holding �2000 microarrays

for E. coli, S. cerevisiae and Shewanella oneidensis. The

data available are all from Affymetrix single channel

microarrays, allowing a uniform normalization pro-

cedure and higher quality data. The E. coli data have

already been applied for TRN inference [60].

Figure 3 shows the discrepancy between the

number of sequenced genomes and the number of

genomes for which any type of expression data exists.

In this study, we cluster bacterial genomes available

in the PubSEED [61] (a large repository of genomes

and annotations) at the taxonomical level of family.

The set of 20 bacterial families associated with ex-

pression data in GEO are shown in the phylogenetic

tree. On an average, 16.2% of the 3493 PubSEED

genomes that fall into these families have expression

data linked to them. Expression data are available

for 55% of the genomes in the Gammaproteobacteria

family, demonstrating the extensive amount of

data available for this taxonomic clade. In contrast,

more than half of the bacterial phyla have expression

data for <10% of their species, revealing that

numerous phylogenetically distinct clusters of mi-

crobes have little gene expression experimentally

characterized.
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Repositories with regulatory interactions also hold

valuable information. Table 2 shows the most com-

prehensive resources available for prokaryotes.

Organism-specific databases are available for well-

known organisms such as E. coli, Bacillus subtillis and

Mycobacterium tuberculosis, including a comprehensive

collection of regulatory information. Among those,

RegulonDB is the most comprehensive resource for

regulatory interactions data of any single organism

(E. coli). In its latest release, genetic sensory response

units are introduced to better represent the biology

of gene regulation [64], trying to capture all the

Figure 2: Survey of the GEO database. (A) Types of expression profiling studies on the database [58]. (B) Number
of series of experiments available from next-generation sequencing technologies [58]. (C) Percentage of data from
bacteria in the entire database: from a total of 28150 series of experiments only 2196 represent bacterial organisms.
(D) Most-represented bacteria on GEO. The organisms presented have at least a minimum of 43 series of experi-
ments. Data for (C) and (D) were obtained with GEO tools [59] in April 2012.

Table 1: Gene expression repositories with bacterial transcriptional data

Database Main features

GEO [36] NCBIs database for expression data. Supports multiple expression studies platforms for all organisms. Browsing tools
available.

ArrayExpress [37] EBIs database for expression data. Data submitted by users and imported from GEO. Advanced queries and ontology-driven
searches.

M3D [54] Data uniformly normalized from Affymetrix microarrays for Escherichia coli, Saccharomyces cerevisiae and Shewanella oneidensis.
SMD [55] Partially public database with data from �60 organisms. Escherichia coli,Mycobacterium tuberculosis and Streptomyces coelicor are

among the most represented microbes. Data analysis framework embedded.
COLOMBOS [56] Cross-platform expression compendia for E. coli, B. subtilis and S. enterica subspecies serovarTyphimurium. Provides tools for

expression analysis and extraction of relevant information.
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Figure 3: Comparison of bacterial genomes with expression data in GEO versus genomes with complete DNA se-
quences in the PubSEED [61]. The 20 bacterial families that contain genomes with expression data in GEO are
arranged in a topological tree. For each family, the most abundantly sampled species in the PubSEED was picked to
represent that family and the alignment of their 16S sequences was used to reconstruct the bacterial family tree.
The color coding of the tree nodes denotes the phyla they belong to. Most phyla contain only one family, with the
exception of Cyanobacteria (three families), Bacteroidetes (four families) and Firmicutes (three families). The last
two phyla are especially overrepresented in terms of both sequenced genomes and expression data. The numbers
on the right of each tree node denote the number of genomes with GEO expression data (566 in total) and the
number of genomes present in the PubSEED (3493 in total). Archea organisms were removed from this study since
we aim to survey only bacterial genomes. In the horizontal bar plot, we show the fraction of each bacterial family
for which expression data are available. The tree was designed with the InteractiveTree of LifeTool [62, 63].

Table 2: Databases with notable bacterial transcriptional data

Database Organism(s) Main features

Organism specific
DBTBS [66] B. subtillis Compendium of regulatory data with promoters, TFs, TFBS, motifs and regulated operons.
RegulonDB [64] E. coli Compendium of regulatory data, promoters, TFs, TFBS, transcription units, operons and

regulatory network interactions.
EcoCyc [65] E. coli Comprehensive database with gene products, transcriptional, post-transcriptional data

and operon organization.
DPInteract [67] E. coli DNA binding proteins and binding site data.
MTBRegList [68] M. tuberculosis TFBS and regulatory motifs.

Organism class/family
CoryneRegNet [69] Corynebacteria TF and regulatory networks.
cTFbase [70] Cyanobacteria PutativeTFs.
TractorDB [71] Gamma-proteobacteria TFBS predictions.
MycoRegNet [72] Mycobacteria TF and regulatory networks.

Non-organism specific
ExtraTrain [73] Bacteria and Archea Transcriptional data and extragenic regions
DBD [74] TF predictions.
RegTransBase [75] Regulatory interactions from literature and TFBS.
PRODORIC [76] Bacteria TFs, TFBSs, regulon lists, promoters, expression profiles.
sRNAMap [77] Small non-coding RNAs and regulators.
ODB [78] Known and putative operons.
RegPrecise [79] Regulon database.
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phenomena involved in regulation, from the initial

signal to gene response. Another major resource for

E. coli data is EcoCyc [65], integrating RegulonDB

and curated data from >21 000 publications and

TRN descriptions that include genes, ligands and

regulators with their targets. DBTBS [66] is the

major resource for B. subtillis regulatory data.

Less-comprehensive databases present fewer types

of different regulatory information (sometimes only

TFBS predictions or TF information) but cover a

wide range of bacteria (Table 2). Notable examples

are ODB [78], which stores known operon data for

�10 000 operons in 56 organisms and putative op-

erons for >1000 genomes; RegTransBase [75],

which collects regulatory data from the literature

and RegPrecise [79], a repository of manually

curated regulons that provides tools for regulon

propagation.

Reconstruction of TRNs can use different types

of data and the accurate selection of data/database(s)

for the method of choice is paramount in the recon-

struction process. Organism-specific databases are

particularly useful for reverse engineering methodol-

ogies as training data sets and essential for validation.

Methodologies based on comparative genomics

approaches make good use of less comprehensive

databases but cover a wider range of organisms.

TRNRECONSTRUCTIONçFROM
TEMPLATE NETWORKSAND
INFERENCE ALGORITHMSTO
INTEGRATIONWITHGSMS
TRN reconstruction aims to make sense of gene

expression and binding site data by revealing the

interactions between the different elements of the

cell’s regulatory machinery. Different methodologies

have been proposed for TRN inference. However,

there is no consensus for classification in the litera-

ture. Some reviews classify methods as bottom–up

and top–down [80], others focus on inference from

a specific type of data such as gene expression [81],

while others present methods and computational

tools [82]. Here, we review and categorize different

methodologies within two major types: genomics-

driven and data-driven. The first uses comparative

genomics approaches, while the second refers to de
novo reverse engineering from expression data.

Within the genomics-driven approaches, we present

two methodologies: template network-based meth-

ods and TFBS data-based methods via prediction of

cis-regulatory elements, including propagation from

known regulons and ab initio regulon inference. The

comparative genomics approaches are described in

Figure 4A and B; Figure 4C describes data-driven

methods from expression data.

Template network-based methods
Template-based methods [83] rely on one or more

well-characterized networks to serve as a starting

point for the reconstruction. These methods ex-

ploit the conservation of prokaryotic gene networks

[84–87] to reconstruct TRNs (Figure 4A). Starting

with a well-characterized network, a search for

orthologous genes (e.g. using bidirectional best hits

[88]) is conducted on the genome of interest. With

the orthologous TFs and their targets noted on the

target genome, random networks are generated from

the template network to confer statistical strength to

the new reconstructed interactions in the target

genome, since this shows the significant trends.

After this analysis, the new interactions on the

target genome are reconstructed. This approach can

be useful for propagation of TRNs to other strains of

a model organism or to closely related organisms.

This methodology presents some limitations,

however. The first is intrinsic: the need for a

high-quality template network derived for an organ-

ism that is phylogenetically close to the organism

being studied. A long phylogenetic distance between

the template and the target organisms can generate

meaningless interactions; hence the choice of the

template network is of paramount importance for

the reconstruction. Another limitation is the scale

of the network to be reconstructed; here our focus

is genome-scale network reconstruction and recon-

structions on this scale depend on the availability of a

template network that also exists at the genome

scale.

TFBSS DATA-BASEDMETHODS
VIA PREDICTIONOFCIS-
REGULATORY ELEMENTS
TRN reconstruction from binding site data can also

be defined as a comparative genomics approach.

Prior to the development of the first binding-site

approaches, most methods relied almost entirely on

functional information from expression data [19, 89].

The GRAM (genetic regulatory models) algorithm

[90] was the first to combine the use of expression

data and binding site data in a genomewide inference
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process, enabling the inclusion of information about

physical interactions between regulatory genes and

their targets. Other work focused on the conserva-

tion of the regulatory machinery across different

organisms.

Regulogger [91] was introduced to generate ‘reg-

ulogs’ or sets of genes that are co-regulated and have

their regulation processes conserved across several

organisms. Using Staphylococcus aureus, regulogs were

produced for well-known sets of genes and provide

clues about the functions of unannotated genes.

Studies of d-proteobacteria [23] revealed that very

diverse species of proteobacteria have similar regula-

tory mechanisms.

The principles behind this methodology were re-

viewed by Rodionov [92]. Figure 4B describes one

of the two strategies proposed. The first step is to

gather all available information related to TFs and

TFBSs in a selected model organism. These data

are then used as a training set for the TFBS model.

The accuracy of the methodology is closely con-

nected to the quality and quantity of sequences

used for training. E. coli is usually used as a model

species for Gram-negative bacteria and B. subtilis for

Gram-positive bacteria. If the TFBSs corresponding

to a particular TF are unknown, all genes regulated

by the TF in the model species are identified and

then orthologs for these genes in closely related

genomes are found. With a TFBS training set built

by this process or experimentally determined (see

Table 2), positional weight matrices (PWMs) are

constructed for the collection of binding sites.

Several algorithms are available that perform motif

pattern recognition [93] to construct PWMs. One of

the first algorithms developed for this task was

AlignACE [94]. This algorithm was recently

upgraded to W-AlignACE [95] incorporating a

new learning approach [96] and showing increased

accuracy in obtaining PWMs for gene sequences,

gene expression data and ChIP-chip data [95].

Using the PWMs, one can perform a genomewide

search for putative TFBSs on the target genomes.

This comparative-genomics-based approach re-

quires a high-quality training set; using genomes

that are not closely related can lead to generation

of false positive TFBS predictions. Even for a set of

closely related genomes, selecting a threshold for

binding site detection can be difficult. The final

step of the TFBS prediction involves the verification

of site consistency. Early studies on E. coli and

Haemophilus influenzae regulon predictions showed

conservation of co-regulated genes by orthologous

Figure 4: TRN reconstruction methodologies. (A) Template network-based methods. (B) TFBS data based via
regulatory cis elements. (C) De novo reverse engineering.
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TFs [97]. Based on this principle, a search is con-

ducted for binding sites upstream from the operons

regulated by each TF. If the site is conserved, the

TFBS prediction is assumed to be correct. On the

other hand, if matches to the predicted TFBS motif

are found dispersed across the genome, the predic-

tion is assumed to be a false positive. By accounting

for changes in the operon structure, further consist-

ency checks are possible. This method showed im-

proved results in binding site detection in several

studies such as nitrate and nitrite respiration in

g-Proteobacteria [98] and nitrogen metabolism in

Gram-positive bacteria [99].

These methodologies have been implemented in

the RegPredict web resource [100], a state-of-the-art

tool for TRN reconstruction with TFBS data. The

webserver comprises a large set of comparative gen-

omics tools available in two reconstruction frame-

works; the first reconstructs regulons for known

PWMs and the second performs de novo regulon in-

ference for unknown binding sites using analysis of

regulon orthologs across closely related genomes.

One of the novelties of RegPredict is the concept

of clusters of co-regulated orthologous operons to

facilitate and improve consistency check. This

semi-automated approach provides the community

with a more swift reconstruction, curation and stor-

age of regulons. RegPredict was used for TRN re-

construction of the central metabolism of the

Shewanella genus [101], for the analysis of the regu-

lation of the hexunorate metabolism in Gammapro-

teobatceria [102] and for the elucidation of control

mechanisms for proteobacterial central carbon me-

tabolism by the HexR regulator [103]. FITBAR

[104] is another web tool for prokaryotic regulon

prediction that aims to fill the gap of the lack of

statistical comparison for calculating the significance

of the predictions.

Techniques also exist for predicting TFBSs when

the available regulatory information is not sufficient

for regulon-based approaches. Phylogenetic foot-

printing [105] identifies highly conserved untrans-

lated regions upstream from the genes of interest,

since these are prime regulatory site candidates. An

orthologous search for these regions is performed

across closely related genomes; candidate binding

sites are identified and these sites are used to perform

a regulatory motif search across all analyzed genomes.

This technique successfully identified the FabR reg-

ulon in E. coli and regulon members in several cya-

nobacteria genomes [106]. Another approach has

been described as subsystem oriented [92] based on

the hypothesis that one TF regulates the genes on the

same metabolic pathway. A search for orthologous

genes on the same metabolic pathway of closely

related genomes is conducted. Using the orthologous

operons from the same subsystem, one can perform a

motif search to build the PWM and search for TFBS.

Concepts of this approach were also implemented in

RegPredict with the introduction of the SEED sub-

systems [61] for regulon reconstruction and curation.

DENOVOREVERSE ENGINEERING
As gene expression data became available through

microarray technologies, development began on

methods for inference of regulatory networks from

expression data [107]. Early reviews describe several

mathematical formalisms such as Bayesian networks,

Boolean networks and differential equations to rep-

resent regulatory networks [108], together with ap-

propriate algorithms to support network inference.

The development of these methodologies led to

the creation of the dialogue for reverse engineering

assessments and methods (DREAM) project in 2007

[109], bringing together experts from different areas

and aiming to provide tools to enable the unbiased

evaluation of various methods [110], hosting annual

challenges. The lessons gained from the results ob-

tained in those challenges have provided improved

methods for network inference [111]. Each year dif-

ferent methods are ranked as top performers on spe-

cific sub challenges that differ in either the type of

data or network size.

Past reviews have categorized reverse engineering

network inference methods according to: (i) math-

ematical modeling approach [81, 112], (ii) module-

based or direct inference methods [80, 113] and

(iii) unsupervised and (semi)-supervised methodolo-

gies [80, 114, 115].

In the first category [81, 116], the differential

equation (ODEs)-based [117, 118], mutual

information-based [119, 120] and Bayesian

network-based methods [121, 122] are the most

popular approaches. Other notable approaches are

based on Boolean networks [123], neural networks

[124, 125], correlation analysis [125] and relevance

networks [127].

The second category divides methods into those

based on a modular view of regulatory networks that

infer regulatory programs for sets of co-expressed

genes and those able to infer the regulatory behavior
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of individual genes (direct inference) [95]. Module-

based inference is inspired by evidence that regula-

tory networks exhibit a modular structure of

co-expressed genes [128, 129], using a separate algo-

rithm for the module inference step, typically based

on clustering or biclustering algorithms, such as

cMonkey [130]. Direct inference methods search

for single interactions between targets and their regu-

lators [60, 131] (Figure 5). A comparison between

representative methods of both approaches showed

that none can be defined as the best solution [113]:

the module-based method LeMoNe [132, 133] is

able to retrieve more efficiently targets for regulators

with a high number of targets and the direct-

inference method, context likelihood of relatedness

(CLR) [60] is preferable for detecting regulators with

one or few targets. Thus, these methods can be seen

as complementary when handling genome-scale

regulatory model reconstruction.

The third category divides methods into super-

vised [134, 135] and unsupervised [136, 137]. The

former use a training set of known interactions creat-

ing classification problems (e.g. to infer whether a

given gene is regulated by a TF) (Figure 5). Some

supervised methods are known as semi-supervised

[138, 139]. Supervised methods have shown to pro-

vide more accurate predictions than unsupervised

methods [140], with successes in expanding the com-

pendium of TF-gene interactions in E. coli [138]. At

the same time, when inferring interactions for an

organism that is not well known, the lack of a

proper training set can lead to a better performance

by unsupervised methods.

A detailed review of the mathematical formalisms

and detailed inference algorithms is out of the scope

of this review. From the overwhelming number of

methods available, we chose to briefly describe 10

methods, including the most widely used, the

most recent [80] and the best performing from the

DREAM challenges [110, 111, 141–143]. We focus

our review on methods that produce genome-scale

regulatory network reconstructions in the form of

regulatory models that may be integrated with

GSMs. While no method currently exists that com-

pletely satisfies these criteria, several algorithms,

given in Table 3, can provide important results in

the route to achieve the goal of fully integrated

genome-scale models.

ARACNE [131] is one of the most widely used

methods, first applied to infer regulatory interactions

on human B cells [149]. Also, it has shown capacity

for genome-wide inference in bacterial species such

as Streptomyces coelicor [150]. CLR introduced the use

of data from different experimental conditions for

the same organism to infer regulatory interactions

and enabled the identification of >700 novel inter-

actions in E. coli [60]. Being one of the most cited

methods with an ability to predict edges in the

RegulonDB, CLR is the method of choice for regu-

latory interactions studies [151]. It was recently used

to unveil virulence factors in Salmonella [152]. A

newer algorithm based on CLR, called synergy

augmented-CLR [144], was the best-performing

method in the DREAM2 genome-scale inference

challenge, exploiting the concept of synergy among

multiple interacting genes [153], where a pair of

genes is used to infer the expression of a third to

increase prediction accuracy.

The Inferelator [146] was applied for genomewide

reconstruction of Halobacterium. A mixed approach

combining this method with CLR was one of the

top performers in the DREAM3 in silico network

challenge [145], using a modified version of CLR

to compute mutual information values that are sub-

sequently used by Inferelator to produce an ODE

model. This method, called tlCLR (time-lagged

CLR), takes advantage of two types of data:

steady-state data from knockout experiments and

Figure 5: Network inference methods classification.
(A) Network node module based versus direct infer-
ence. (B) Supervised versus unsupervised. Supervised
methods require a training set of previous known
interactions.
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time series gene expression data. Another method

using different types of data was introduced by Yip

et al. [147] gathering steady-state data from a noise

model and time series data from an ODE model; this

method was the top performer of the DREAM3 in
silico challenge. Most algorithms in Table 3 can use

steady-state or time series data, thus showing the

benefits of integrating both types of data.

DREAM5 featured a genome-scale network in-

ference challenge with a large data set from a com-

pendium of microarray data for E. coli comprising

805 chips, 334 TFs and 4511 genes. Large data sets

were also provided for network inference on S. cere-
visiae and S. aureus. Gene network inference with

ensemble of trees (GENIE3) [135] uses tree-based

methods [154] decomposing the inference problem

of p size into p distinct regression models. This

method was the best performer overall and the top

performer in the in silico network. GENIE3 had al-

ready been the best performer in the DREAM4 in
silico inference for the 100-gene-multifactorial sub-

challenge, where only multifactorial data were

provided and showed equal capacity in successfully

inferring networks from real data when compared

was widely used methods such as CLR and

ARACNE [135].

Several methods integrate multiple data types

(e.g. inference from expression, binding site data)

to facilitate TRN reconstruction. semi-supervised

regulatory network discoverer (SEREND) [138]

uses a semi-supervised and iterative approach to

unveil regulatory interactions. SEREND depends

on a curated set of TF-gene interactions and TF-

gene motif scores as a training set to construct a

logistic regression model. The known predictions

are then expanded and the predictions validated

with ChiP-chip and time-series expression data.

This approach was used to better predict and to

give new insights into the factors involved in activa-

tion and repression in the aerobic/anaerobic regula-

tion mechanism in E. coli [138].

Gene promoter scan (GPS) [148] is also able to

integrate other types of data; but as a module-based

method, it follows a different approach. GPS is a

machine learning method that builds promoter

models and their relationships computed from a

data set. In the next step, characterized profiles

(groups of promoters) are generated. The best pro-

files are used as candidates for genomewide predic-

tions. Studies with E. coli and S. enterica using GPS

unveiled previously unknown interactions and novel

members of the PhoP protein controlled regulon

[148].

DISTILLER [137] is another method that exploits

the concept of regulation modularity integrating

other sources of data for network inference. This

framework can be applied to any organism and in-

corporate motif and ChiP-Chip data. The integrated

approach was used to study the ‘FNR’ regulon in

E. coli identifying novel predictions that were experi-

mentally validated. These studies provided insights

on modularity dynamics pointing to the existence

of polycistronic transcription [155].

A search for the best inference method usually

turns to benchmarking studies; but the choice of

benchmark data sets presents a problem, with differ-

ent studies showing very sparse results [156, 157].

Lessons from all the DREAM challenges show

that there is no individual best method. Results

from community predictions, a combination of

several reverse engineering methods, are closer to a

state-of-art/best method, outperforming results from

Table 3: Methods for reverse engineering of gene regulatory networks from expression data

Algorithm Modeling approach Inference approach Semi/supervised

DI MB Yes No

ARACNE [131] Mutual information (MI) X X
CLR [60] X X
SA-CRL [144] X X
tlCLR [145] þMI X X
Inferelator [146] ODE model X X
Yip et al. [147] þNoise model X X
GENIE3 [135] Regression tress X X
SEREND [138] Logistic regression X X
GPS [148] Fuzzy clustering X X
DISTILLER [137] Association rules (itemsets) X X

DI, direct inference; MB, module-based.
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individual algorithms. The determination of error

profiles enables the advantages and limitations of

each inference method to be assessed in order to

determine which method is ‘the best’ for a specific

inference problem.

The methods described above show recent ad-

vances, providing a good summary of the huge

number of approaches that have been put forward.

However, the underlying problem is complex, given

the large search spaces involved and the still restricted

availability of data that leads to an undetermined

problem where many solutions can explain the

data equally well. Hence, most of the methods rely

on heuristic methods using different strategies to sim-

plify the problem. The most important simplification

is to reduce the search for a network or model ex-

plaining the data, with a huge number of possible

interactions between the different entities involved,

to the search of individual interactions or to small

clusters or modules. This allows in some cases for

distinct methods to be integrated to better support

the results and, in the most elaborate methods, being

followed by steps of determining regulatory pro-

grams based on these individual interactions.

PHENOTYPE SIMULATION BY
INTEGRATEDMETABOLICAND
REGULATORYNETWORKS
The simulation of phenotype from genotype using

reconstructed models has been one of the major

goals and challenges of systems biology [158–160].

Early work on the integration of metabolic networks

with gene expression data revealed that some cellular

phenotypes cannot be described by the metabolic

flux distribution alone [13]. Whole-cell modeling is

required to capture many phenotypes and while this

has been one of the great challenges of the century

[161], integration of regulatory networks is one key

milestone toward achieving this goal [162].

Significant advances have been made in the recon-

struction of metabolic, regulatory and signaling net-

works [7, 163], as well as in the integrated simulation

of these three network types [164, 165]. Here, we

focus on the potential for the simulation of inte-

grated metabolic and regulatory networks and the

challenges that arise in this integrated approach [166].

Several mathematical formalisms have been

applied to model different types of biochemical net-

works (e.g. Boolean and Bayesian networks,

constraints-based optimizations, ODEs). The many

types of approaches for integrated network recon-

struction and analysis have been reviewed recently

[82, 167, 168]. Here, we focus on the methods that

can be applied at genome scale, mainly stoichio-

metric models using the constraints-based approach

[169, 170].

Constraints-based stoichiometric models do not

account for intercellular dynamics. Instead, they

assume a pseudo-steady-state for the cell, in which

metabolite accumulation does not occur. This is

described mathematically by a set of linear constraints

on the flux through each metabolic reaction, defined

by the mass balance for each internal metabolite

(Figure 6):

S � v ¼ 0,

where S represents the stoichiometric matrix and v
the vector of fluxes through all metabolic reactions.

The set of fluxes that satisfy these constraints define

the feasible space for reaction fluxes (Figure 5).

Constraints can be imposed on reaction reversibility

and directionality (v> 0), on enzyme capacity

(v< vmax) and on nutrient availability and uptake.

Extensions have been made to these basic

mass-balance and flux boundary constraints to cap-

ture the additional constraints imposed by regulatory

interactions. Figure 7 shows existing methods for

analysis and simulation of integrated metabolic and

regulatory networks. Global network analysis meth-

ods such as extreme pathway analysis [171] were de-

veloped to analyze specific pathway properties, such

as length and redundancy. These methods were used

successfully to characterize changes in the solution

space with the addition of regulatory constraints [28].

The FBA approach uses linear programming to

identify the specific flux distributions that satisfy prob-

lem constraints and best reflect the state of the cell or

represent target states for metabolic engineering

[26, 172]. FBA was expanded to account for regula-

tory information with the introduction of rFBA [13],

which uses a Boolean logic formalism to define add-

itional constraints specifying which genes in the net-

work are ON or OFF, based on specified stimuli (e.g.

stress). This approach was successfully applied with the

first genome-scale integrated model of metabolism

and regulation in E. coli, resulting in the correction

of several phenotype predictions compared with the

use of mass balance and flux boundary constraints

alone [14]. However, this approach requires the inte-

grated model to be initialized at a relevant state for the

regulatory components of the system. The Boolean
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regulatory constraints are then applied to determine

how the state of the regulatory components will

change over time in response to stimuli. Selection

of a relevant initial condition for the model remains

a challenge for this methodology, since many equally

consistent states exist for a set of stimuli, with equally

valid associated flux distributions.

To address some of the limitations of rFBA,

SR-FBA [27] was introduced, differing from rFBA

in that it accounts for metabolic and regulatory con-

straints in a single step and quantifies the impact of

these constraints on the flux distribution. This meth-

odology enables the rapid exploration of feasible

combined regulatory and metabolic states and it

Figure 7: Pathway-based and constraints-based methods for the analysis and simulation of integrated metabolic
and regulatory networks. FBA, flux balance analysis; rFBA, regulatory FBA; SR-FBA, steady-state regulatory FBA;
idFBA, integrated dynamic FBA; iFBA, integrated FBA; PROM, probabilistic regulation of metabolism; IOMA, inte-
grative omics-metabolic analysis; tFBA, transcriptional controlled FBA.

Figure 6: Stoichiometric modeling. The metabolic network is used to construct the stoichiometric matrix using
mass balances of the metabolites.The constraints-based approach is used to impose constraints to the stoichiomet-
ric model. S�v¼ 0, pseudo steady-state assumption; v> 0, reversibility constraint; v< vmax, capacity constraint.
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rapidly identifies constraints that are internally incon-

sistent, preventing their simultaneous enforcement in

a single steady-state. Yet, therein lies the substantial

limitation of this approach, since inconsistent regu-

latory constraints often arise, because regulatory

mechanisms exist to manage transitions between

states of the cell in response to stimuli. Some of

these transitions involve a cascade of intermediate

unstable states that cannot be captured by the

SR-FBA formalism. The constraints that manage

these cascade transitions are not designed to be sim-

ultaneously enforced with all other constraints in

the cell, meaning they appear to be internally

inconsistent.

The quest for a whole-cell model led to the de-

velopment of methods that also integrate signaling

networks. Two methods have been proposed: inte-

grated FBA (iFBA [164]) and idFBA (integrated dy-

namic FBA) [165]. iFBA is an expansion of the rFBA

approach that aims to integrate signaling models,

when available, for an organism or pathway being

studied. An rFBA model for the central metabolism

of E. coli [173] was combined with an ODE kinetic

model for the phosphotransferase system, showing

improved predictions compared with both rFBA

and ODE models. The novelty of idFBA is the in-

corporation of slow and fast reactions in the stoichio-

metric framework. Slow reactions are incorporated

directly into the stoichiometric matrix with a time

delay; fast reactions rely on the pseudo steady-state

assumption of the FBA approach. idFBA was applied

to the analysis of yeast metabolism [174], demon-

strating an approximation for the time-course pre-

diction of time-delayed reactions, with the advantage

of requiring fewer measured parameters than with

full kinetic modeling.

Before methods such as rFBA, srFBA, iFBA or

idFBA can be applied, TRNs must be translated

into Boolean network models that connect external

stimuli to internal metabolic reaction activity. The

probabilistic regulation of metabolism (PROM)

[175] approach was introduced to avoid the transla-

tion to Boolean constraints by enabling the gener-

ation of integrated models directly from high-

throughput TRN data. PROM aims to circumvent

the Boolean approaches that would consider a gene

as either ON or OFF, with results outperforming

rFBA. The differences in the predictions are attrib-

uted to the Boolean formalism of rFBA, which

establishes a set of ‘rigid’ flux restrictions, where

PROM presents a more continuous flux restriction.

The reconstruction of an integrated model for M.
tuberculosis showed a potential use of PROM for

drug target prediction. PROM can be seen as

the closest methodology for semi-automated recon-

struction of integrated metabolic and regulatory

networks.

Transcriptional-controlled FBA (tFBA) [30] is an-

other method that uses experimental expression data

for the assessment of the regulatory state. Like

PROM, tFBA aims to surpass the rigid ON/OFF

gene states of a purely Boolean formulation by intro-

ducing the concept of more relaxed up/down con-

straints. As more experimental data are available, the

level of expression of a gene can be observed to

change under specific conditions without being

entirely shut off. This method shows how the add-

ition of large quantities of expression data can pro-

vide a way to improve FBA-based methods in the

absence of kinetic parameters for metabolites and

reactions.

DISCUSSION
In this survey, we begin with an overview of the

data currently available for TRN reconstruction,

revealing the limited number of data sets available

for bacterial organisms, despite the massive amount

of existing microarray data (Figures 1 and 2). We

demonstrate through a phylogenetic analysis of the

available expression data that large numbers of

diverse organisms for which reference genomes are

now available have never been examined using tran-

scriptomic techniques. In order to fully understand

bacterial regulation, expression data must be

collected under a variety of conditions for as many

diverse genomes as possible. We also show how

next-generation sequencing technologies are

beginning to dominate the latest submissions to the

gene expression data repositories. While these new

technologies enable the community to collect

more data at a faster and cheaper price, they face

the familiar problem of data standardization.

Recent studies show how widespread batch effects,

such as laboratory conditions, technicians and

reagent brands lead to incorrect analysis of data

and different results across different laboratories

[176].

As for data relating to the regulons, TFs, binding

sites and stimuli that comprise the TRN itself, com-

prehensive databases are available for a few specific

organisms. Multiorganism databases do exist, but
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these typically focus on one type of regulatory infor-

mation, lacking the information needed to fully cap-

ture the regulatory effects. The latest version of

RegulonDB makes an effort in the direction of rep-

resenting the complete regulation by introducing

genetic sensory response units.

Next, we examine how the methods applied for

the reconstruction of TRN have progressed over the

past decade. As the number of available reference

genomes with expression data has increased, we see

a corresponding increase in the number and power

of approaches based on comparative genomics. With

the increasing amounts of consistent high-quality ex-

pression data, we are also seeing increasing success

with methods based on the reverse engineering of

TRN from expression data. As these two examples

amply demonstrate, the best method for TRN

reconstruction depends on the amount and type of

data available. Although the size of the desired TRN

to be inferred is also an important factor, we suggest

that genome-scale networks will always be desired in

the near future. We also note the success of commu-

nity efforts that combine the advantages of several

reconstruction approaches, showing that hybrid

approaches are the most successful given the present

knowledge, where the complementary nature of the

approaches helps to improve accuracy.

In the final portion of our review, we examine

several approaches for the reconstruction and analysis

of integrated metabolic and regulatory models.

These approaches have been successfully applied to

improve our ability to accurately predict phenotype

from genotype, to explore the impact of regulation

on the metabolic pathways and to simulate regula-

tory interactions that are continuous rather than dis-

crete. Industrial successes in fields such as bioethanol

production show the potential of current models and

importance of improving these models [177, 178].

Adding a ‘layer’ of regulation can help unveil and

predict unobserved phenotypes. Strain optimization

has been one of the main objectives of metabolic

engineering and the potential for improvements

integrating regulatory information recently led to

the development of methods that account for

this type of information [179, 180]. Yet, we still

lack a full understanding of the interplay between

regulation and metabolism. Several studies have

shown how major transcriptional changes are not

always followed by changes in the metabolic flux

[181, 182].

Several unknowns remain in the analysis and

reconstruction of integrated biochemical networks,

mostly because we do not yet possess a full under-

standing of regulation. For example, some efforts

have been made to develop methods to account

for metabolic activity effects regulated by

post-transcriptional effects [183]. Methods such as

PROM and tFBA allow the relaxation of constraints

to try to account for regulatory effects. Even with

transcriptional regulation, there are biological effects

that these network models fail to reproduce. For

example, chromosome structure can physically con-

strain bacterial transcriptional regulation [184].

Epigenetics of transcriptional regulation are also dif-

ficult to account for and some chemical marks have

been described to be linked to this type of mechan-

ism in bacteria [185].

Some of the methods described rely on basic as-

sumptions such as that the same TF regulates ortho-

logous genes or that the same TF may regulate genes

in the same pathway. These assumptions may fail to

represent reality, however, since TRNs show con-

siderable plasticity in their structure. Orthologous

regulators have been shown to control different

pathways across different species [186] and global

regulators have been shown to regulate different

mechanisms [187]. Incorporation of models in

evolutionary processes such as duplication and

horizontal gene transfer has been proposed to deal

with TRN plasticity [92, 188]. TRN also showed

stochasticity [189], which can be an issue, especially

when these networks are modeled by using a

Boolean formalism that further propagates these

stochastic effects [190].

Most recently Karr et al. [191] introduced the

first whole-cell model for Mycoplasma genitalium.

Integrating 28 submodels, the authors managed

to validate the model across a wide set of experi-

mental data, pointing out its potential for novel

biological discovery in M. genitalium. It must be

noted however, that M. genitalium is the smallest

bacterial genome, with only 525 genes. Thus,

while this methodology does represent a large step

forward toward the goal of true whole-cell models,

much more work must be done before similar

models can be constructed for larger and more com-

plex organisms.

As the pursuit of a whole-cell model continues,

we expect novel regulatory interactions will be dis-

covered in our drive to build a full understating of

cell regulatory machinery.
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Key Points

� Large numbers of phylogeny for which genome sequences are
available still lack any gene expression data.

� Repositories of data onTRN tend to be comprehensive organism
specific or narrowly focusedmultiorganism.

� The bestmethods for reconstruction of TRN from data depend
on the size of the desired network and the types/amount of
data available; but, in general, hybrid methods that combine
many approaches produce the best results.

� Methods for integrating regulatory and metabolic models must
include both steady state and dynamic components and they
must accommodate more than just Boolean regulation in order
to fully capture the behavior of transcriptional regulation.

� Integration of regulatory constraints in GSM models results in
substantial improvements in accuracy of phenotype predictions,
particularly since many phenotypes cannot be fully explained
without accounting for regulation.Yet, someregulatorymechan-
isms still exist that are poorly understood and require further
study.
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