59 research outputs found

    Optimization of orbital assignment and specification of service areas in satellite communications

    Get PDF
    The mathematical nature of the orbital and frequency assignment problem for communications satellites is explored, and it is shown that choosing the correct permutations of the orbit locations and frequency assignments is an important step in arriving at values which satisfy the signal-quality requirements. Two methods are proposed to achieve better spectrum/orbit utilization. The first, called the delta S concept, leads to orbital assignment solutions via either mixed-integer or restricted basis entry linear programming techniques; the method guarantees good single-entry carrier-to-interference ratio results. In the second, a basis for specifying service areas is proposed for the Fixed Satellite Service. It is suggested that service areas should be specified according to the communications-demand density in conjunction with the delta S concept in order to enable the system planner to specify more satellites and provide more communications supply

    Engineering calculations for communications satellite systems planning

    Get PDF
    Observed solution times were analyzed for the extended gradient and cyclic coordinate search procedures. The times used in the analysis come from computer runs made during a previously-reported experiment conducted to assess the quality of the solutions to a BSS synthesis problem found by the two search methods. The results of a second experiment with a Fixed Satellite Service (FSS) test problem are also presented. Computational results are summarized for mixed integer programming approaches for solving FSS synthesis problems. A promising heuristic algorithm is described. A synthesis model is discussed for orbital arc allotment optimization. Research plans for the near future are also presented

    Detecting depression in dyadic conversations with multimodal narratives and visualizations

    Full text link
    Conversations contain a wide spectrum of multimodal information that gives us hints about the emotions and moods of the speaker. In this paper, we developed a system that supports humans to analyze conversations. Our main contribution is the identification of appropriate multimodal features and the integration of such features into verbatim conversation transcripts. We demonstrate the ability of our system to take in a wide range of multimodal information and automatically generated a prediction score for the depression state of the individual. Our experiments showed that this approach yielded better performance than the baseline model. Furthermore, the multimodal narrative approach makes it easy to integrate learnings from other disciplines, such as conversational analysis and psychology. Lastly, this interdisciplinary and automated approach is a step towards emulating how practitioners record the course of treatment as well as emulating how conversational analysts have been analyzing conversations by hand.Comment: 12 page

    An examination of the language construct in NIMH's research domain criteria:Time for reconceptualization!

    Get PDF
    The National Institute of Mental Health’s Research Domain Criteria (RDoC) Initiative “calls for the development of new ways of classifying psychopathology based on dimensions of observable behavior.” As aresult of this ambitious initiative, language has been identifi d as an independent construct in the RDoC matrix. In this article, we frame language within an evolutionary and neuro- psychological context and discuss some of the limitations to the current measurements of language. Findings from genomics and the neuroimaging of performance during language tasks are dis- cussed in relation to serious mental illness and within the context of caveats regarding measuring language. Indeed, the data collec- tion and analysis methods employed to assay language have been both aided and constrained by the available technologies, methodologies, and conceptual defi Consequently, differ- ent fields of language research show inconsistent defi s of language that have become increasingly broad over time. Individ- ually, they have also shown significant improvements in conceptual resolution, aswell as inexperimental and analytic techniques. More recently, language research has embraced collaborations across disciplines, notably neuroscience, cognitive science, and computa- tional linguistics and has ultimately re-defi classical ideas of language. As we move forward, the new models of language with their remarkably multifaceted constructs force a re-examination of the NIMH RDoC conceptualization of language and thus the neuroscience and genetics underlying this concept

    GTD solution with higher order terms to the diffraction by an edge: Towards a uniform solution

    No full text
    A UTD solution for an edge of a perfectly conducting wedge is presented which includes terms of order higher than the ordinary UTD. The problem is studied for three special cases: (i) plane and (ii) spherical wave incidence on a straight wedge with planar surfaces, and (iii) cylindrical wave incidence on a wedge with surfaces curved in the direction normal to the edge. This solution not only compensates the jump discontinuities in the GO field but also the discontinuities in the derivative. The solution found is exact for the special case of a plane wave incident on a halfplane. The solution with the higher order terms is found to be accurate when the large parameter is reduced by a factor of two as compared with the ordinary UTD solution

    MUTUAL COUPLING EFFECTS OF FINITE RECTANGULAR PHASED-ARRAYS

    No full text
    A rigorous integral equation formulation for the analysis of a phased array of flangemounted waveguide apertures is given for a finite number of elements and nonuniform spacings. The resulting set of ihtegrd equations is reduced to a matrix equation called the coupling matrix which relates the coefficients of all the modes in all the waveguides to one another. The solution then yields the dominant mode reflection coefficient, coefficients of scattered modes and hence the field in each waveguide. The blockToeplitr symmetry property for the uniformly spaced linear and rectangular grid arrays is utilized in the solution of the system of equations

    Two alternative expressions for the spherical wave expansion of the time domain scalar free-space Green's function and an application: Scattering by a soft sphere

    No full text
    The importance of expanding Green's functions, particularly free-space Green's functions, in terms of orthogonal wave functions is practically self-evident when frequency domain scattering problems are of interest. With the relatively recent and widespread interest in time domain scattering problems, similar expansions of Green's functions are expected to be useful in the time domain. In this paper, two alternative expressions, expanded in terms of orthogonal spherical wave functions, for the free-space time domain scalar Green's functions are presented. Although the two expressions are equivalent, one of them is seen to be more convenient for the calculation of the scattered field for a known equivalent source density, whereas the second expression is more suitable for setting up an integral equation for the equivalent source density. Such an integral equation may be setup, for example, by the application of a time domain equivalent of the T-matrix (extended boundary condition) method. (C) 1997 Acoustical Society of America

    Near-field scanning in the time domain on a spherical surface - A formulation using the free-space Green's function

    No full text
    Two formulations for determining the characteristics of an unknown source of acoustic waves using the measurement of its field at its near zone are presented. The measurement in both cases is to be performed on a spherical scan surface which encapsulates the source. The first is for an ideal probe which measures the field at its location. The knowledge of the field is sufficient; its normal derivative is not required. In the second formulation a realistic probe is considered. This time it is required only that the probe has an axially symmetric receiving characteristic. With this formulation, the time functions which characterize the source are found using only the signal at the output of the probe. Both formulations are such that they are not specific to the scan surface radius. Furthermore, they are entirely in the time domain, requiring no inverse Fourier transformations left to be performed. (C) 2001 Acoustical Society of America
    corecore