442 research outputs found

    Planning Considerations for a Mars Sample Receiving Facility: Summary and Interpretation of Three Design Studies

    Get PDF
    It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning

    Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The low-density lipoprotein receptor related protein 1 (LRP1) has been implicated in Alzheimer's disease (AD) but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1.</p> <p>Results</p> <p>We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP), which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b). Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human <it>APOE4 </it>gene showed significant differences in Nyggf4 expression.</p> <p>Conclusions</p> <p>These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered early in disease. Genetic and functional studies have implicated both LRP1 and NYGGF4 in obesity and cardiovascular disease and the physical association of these proteins may reflect a common mechanism. This is particularly interesting in light of the dual role of ApoE in both cardiovascular risk and AD. The results support further studies on the functional relationship between NYGGF4 and LRP1.</p

    Interaction of the Phosphotyrosine Interaction/Phosphotyrosine Binding-related Domains of Fe65 with Wild-type and Mutant Alzheimer's β-Amyloid Precursor Proteins

    Get PDF
    The two tandem phosphotyrosine interaction/phosphotyrosine binding (PID/PTB) domains of the Fe65 protein interact with the intracellular region of the Alzheimer's beta-amyloid precursor protein (APP). This interaction, previously demonstrated in vitro and in the yeast two hybrid system, also takes place in vivo in mammalian cells, as demonstrated here by anti-Fe65 co-immunoprecipitation experiments. This interaction differs from that occurring between other PID/PTB domain-containing proteins, such as Shc and insulin receptor substrate 1, and activated growth factor receptors as follows: (i) the Fe65-APP interaction is phosphorylation-independent; (ii) the region of the APP intracellular domain involved in the binding is larger than that of the growth factor receptor necessary for the formation of the complex with Shc; and (iii) despite a significant similarity the carboxyl-terminal regions of PID/PTB of Fe65 and of Shc are not functionally interchangeable in terms of binding cognate ligands. A role for Fe65 in the pathogenesis of familial Alzheimer's disease is suggested by the finding that mutant APP, responsible for some cases of familial Alzheimer's disease, shows an altered in vivo interaction with Fe65

    Dietary Composition Modulates Brain Mass and Solubilizable ABeta Levels in a Mouse Model of Aggressive Alzheimer\u27s Amyloid Pathology

    Get PDF
    Objective: Alzheimer\u27s disease (AD) is a progressive neurodegenerative disease of the central nervous system (CNS). Recently, an increased interest in the role diet plays in the pathology of AD has resulted in a focus on the detrimental effects of diets high in cholesterol and fat and the beneficial effects of caloric restriction. The current study examines how dietary composition modulates cerebral amyloidosis and neuronal integrity in the TgCRND8 mouse model of AD. Methods: From 4 wks until 18 wks of age, male and female TgCRND8 mice were maintained on one of four diets: (1) reference (regular) commercial chow; (2) high fat/low carbohydrate custom chow (60 kcal% fat/30 kcal% protein/10 kcal% carbohydrate); (3) high protein/low carbohydrate custom chow (60 kcal% protein/30 kcal% fat/10 kcal% carbohydrate); or (4) high carbohydrate/low fat custom chow (60 kcal% carbohydrate/30 kcal% protein/10 kcal% fat). At age 18 wks, mice were sacrificed, and brains studied for (a) wet weight; (b) solubilizable Aβ content by ELISA; (c) amyloid plaque burden; (d) stereologic analysis of selected hippocampal subregions. Results: Animals receiving a high fat diet showed increased brain levels of solubilizable Aβ, although we detected no effect on plaque burden. Unexpectedly, brains of mice fed a high protein/low carbohydrate diet were 5% lower in weight than brains from all other mice. In an effort to identify regions that might link loss of brain mass to cognitive function, we studied neuronal density and volume in hippocampal subregions. Neuronal density and volume in the hippocampal CA3 region of TgCRND8 mice tended to be lower in TgCRND8 mice receiving the high protein/low carbohydrate diet than in those receiving the regular chow. Neuronal density and volume were preserved in CA1 and in the dentate gyrus. Interpretation: Dissociation of Aβ changes from brain mass changes raises the possibility that diet plays a role not only in modulating amyloidosis but also in modulating neuronal vulnerability. However, in the absence of a study of the effects of a high protein/low carbohydrate diet on nontransgenic mice, one cannot be certain how much, if any, of the loss of brain mass exhibited by high protein/low carbohydrate diet-fed TgCRND8 mice was due to an interaction between cerebral amyloidosis and diet. Given the recent evidence that certain factors favor the maintenance of cognitive function in the face of substantial structural neuropathology, we propose that there might also exist factors that sensitize brain neurons to some forms of neurotoxicity, including, perhaps, amyloid neurotoxicity. Identification of these factors could help reconcile the poor clinicopathological correlation between cognitive status and structural neuropathology, including amyloid pathology

    Dietary composition modulates brain mass and solubilizable Aβ levels in a mouse model of aggressive Alzheimer's amyloid pathology

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Objective Alzheimer's disease (AD) is a progressive neurodegenerative disease of the central nervous system (CNS). Recently, an increased interest in the role diet plays in the pathology of AD has resulted in a focus on the detrimental effects of diets high in cholesterol and fat and the beneficial effects of caloric restriction. The current study examines how dietary composition modulates cerebral amyloidosis and neuronal integrity in the TgCRND8 mouse model of AD. Methods From 4 wks until 18 wks of age, male and female TgCRND8 mice were maintained on one of four diets: (1) reference (regular) commercial chow; (2) high fat/low carbohydrate custom chow (60 kcal% fat/30 kcal% protein/10 kcal% carbohydrate); (3) high protein/low carbohydrate custom chow (60 kcal% protein/30 kcal% fat/10 kcal% carbohydrate); or (4) high carbohydrate/low fat custom chow (60 kcal% carbohydrate/30 kcal% protein/10 kcal% fat). At age 18 wks, mice were sacrificed, and brains studied for (a) wet weight; (b) solubilizable A&#946; content by ELISA; (c) amyloid plaque burden; (d) stereologic analysis of selected hippocampal subregions. Results Animals receiving a high fat diet showed increased brain levels of solubilizable A&#946;, although we detected no effect on plaque burden. Unexpectedly, brains of mice fed a high protein/low carbohydrate diet were 5% lower in weight than brains from all other mice. In an effort to identify regions that might link loss of brain mass to cognitive function, we studied neuronal density and volume in hippocampal subregions. Neuronal density and volume in the hippocampal CA3 region of TgCRND8 mice tended to be lower in TgCRND8 mice receiving the high protein/low carbohydrate diet than in those receiving the regular chow. Neuronal density and volume were preserved in CA1 and in the dentate gyrus. Interpretation Dissociation of A&#946; changes from brain mass changes raises the possibility that diet plays a role not only in modulating amyloidosis but also in modulating neuronal vulnerability. However, in the absence of a study of the effects of a high protein/low carbohydrate diet on nontransgenic mice, one cannot be certain how much, if any, of the loss of brain mass exhibited by high protein/low carbohydrate diet-fed TgCRND8 mice was due to an interaction between cerebral amyloidosis and diet. Given the recent evidence that certain factors favor the maintenance of cognitive function in the face of substantial structural neuropathology, we propose that there might also exist factors that sensitize brain neurons to some forms of neurotoxicity, including, perhaps, amyloid neurotoxicity. Identification of these factors could help reconcile the poor clinicopathological correlation between cognitive status and structural neuropathology, including amyloid pathology.Published versio

    Membrane proteins and proteomics: Love is possible, but so difficult

    Get PDF
    Despite decades of extensive research, the large-scale analysis of membrane proteins remains a difficult task. This is due to the fact that membrane proteins require a carefully balanced hydrophilic and lipophilic environment, which optimum varies with different proteins, while most protein chemistry methods work mainly, if not only, in water-based media. Taking this review [Santoni, Molloy and Rabilloud, Membrane proteins and proteomics: un amour impossible? Electrophoresis 2000, 21, 1054-1070] as a pivotal paper, the current paper analyzes how the field of membrane proteomics exacerbated the trend in proteomics, i.e. developing alternate methods to the historical two-dimensional electrophoresis, and thus putting more and more pressure on the mass spectrometry side. However, in the case of membrane proteins, the incentive in doing so is due to the poor solubility of membrane proteins. This review also shows that in some situations, where this solubility problem is less acute, two-dimensional electrophoresis remains a method of choice. Last but not least, this review also critically examines the alternate approaches that have been used for the proteomic analysis of membrane proteins

    Amyloid angiopathy of the floor of the mouth: a case report and review of the literature

    Get PDF
    Amyloidosis is a rare disease characterised by the deposition of insoluble extracellular fibrillar proteins in various tissues of the body. The pattern of manifestation is organ dependent and also on whether the disease is localised or systemic, primary or secondary
    corecore