958 research outputs found

    Nonmonotonic inelastic tunneling spectra due to surface spin excitations in ferromagnetic junctions

    Get PDF
    The paper addresses inelastic spin-flip tunneling accompanied by surface spin excitations (magnons) in ferromagnetic junctions. The inelastic tunneling current is proportional to the magnon density of states which is energy-independent for the surface waves and, for this reason, cannot account for the bias-voltage dependence of the observed inelastic tunneling spectra. This paper shows that the bias-voltage dependence of the tunneling spectra can arise from the tunneling matrix elements of the electron-magnon interaction. These matrix elements are derived from the Coulomb exchange interaction using the itinerant-electron model of magnon-assisted tunneling. The results for the inelastic tunneling spectra, based on the nonequilibrium Green's function calculations, are presented for both parallel and antiparallel magnetizations in the ferromagnetic leads.Comment: 9 pages, 4 figures, version as publishe

    The Korringa-Kohn-Rostoker Non-Local Coherent Potential Approximation (KKR-NLCPA)

    Full text link
    We introduce the Korringa-Kohn-Rostocker non-local coherent potential approximation (KKR-NLCPA) for describing the electronic structure of disordered systems. The KKR-NLCPA systematically provides a hierarchy of improvements upon the widely used KKR-CPA approach and includes non-local correlations in the disorder configurations by means of a self-consistently embedded cluster. The KKR-NLCPA method satisfies all of the requirements for a successful cluster generalization of the KKR-CPA; it remains fully causal, becomes exact in the limit of large cluster sizes, reduces to the KKR-CPA for a single-site cluster, is straightforward to implement numerically, and enables the effects of short-range order upon the electronic structure to be investigated. In particular, it is suitable for combination with electronic density functional theory to give an ab-initio description of disordered systems. Future applications to charge correlation and lattice displacement effects in alloys and spin fluctuations in magnets amongst others are very promising. We illustrate the method by application to a simple one-dimensional model.Comment: Revised versio

    MMN and Differential Waveform

    Get PDF
    A mismatch negativity response (MMN) and a new differential waveform were derived in an effort to evaluate a neural refractory or recovery effect in adult listeners. The MMN was elicited using oddball test runs in which the standard and deviant stimuli differed in frequency. To derive the differential waveform, the same standard and deviant stimuli were presented alone. MMN responses were obtained by subtracting the averaged responses to standards from the deviants. The differential waveforms were obtained by subtracting the averaged responses to standards presented alone from deviants presented alone. Scalp topography for the MMN and differential waveforms were similar. A significant (p < .05) positive and negative correlation was found between the earlier and later components of the bimodal MMN and the N1 and P2 component of the differential waveform, respectively. Further, N1 and P2 of the differential waveform were significant (p < .05) predictor variables of early and late peak amplitudes of the MMN. These results suggest that refractory effects may overlay/modify the morphology of the MMN waveform

    Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    Get PDF
    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath accelerated and radiation pressure accelerated protons is investigated. This approach opens up new routes to control laser-driven ion sources

    Atmospheric Neutrino Oscillations and New Physics

    Get PDF
    We study the robustness of the determination of the neutrino masses and mixing from the analysis of atmospheric and K2K data under the presence of different forms of phenomenologically allowed new physics in the nu_mu--nu_tau sector. We focus on vector and tensor-like new physics interactions which allow us to treat, in a model independent way, effects due to the violation of the equivalence principle, violations of the Lorentz invariance both CPT conserving and CPT violating, non-universal couplings to a torsion field and non-standard neutrino interactions with matter. We perform a global analysis of the full atmospheric data from SKI together with long baseline K2K data in the presence of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together with sub-dominant effects due to these forms of new physics. We show that within the present degree of experimental precision, the extracted values of masses and mixing are robust under those effects and we derive the upper bounds on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include

    Random Series and Discrete Path Integral methods: The Levy-Ciesielski implementation

    Full text link
    We perform a thorough analysis of the relationship between discrete and series representation path integral methods, which are the main numerical techniques used in connection with the Feynman-Kac formula. First, a new interpretation of the so-called standard discrete path integral methods is derived by direct discretization of the Feynman-Kac formula. Second, we consider a particular random series technique based upon the Levy-Ciesielski representation of the Brownian bridge and analyze its main implementations, namely the primitive, the partial averaging, and the reweighted versions. It is shown that the n=2^k-1 subsequence of each of these methods can also be interpreted as a discrete path integral method with appropriate short-time approximations. We therefore establish a direct connection between the discrete and the random series approaches. In the end, we give sharp estimates on the rates of convergence of the partial averaging and the reweighted Levy-Ciesielski random series approach for sufficiently smooth potentials. The asymptotic rates of convergence are found to be O(1/n^2), in agreement with the rates of convergence of the best standard discrete path integral techniques.Comment: 20 pages, 4 figures; the two equations before Eq. 14 are corrected; other typos are remove

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    Resonances of low orders in the planetary system of HD37124

    Full text link
    The full set of published radial velocity data (52 measurements from Keck + 58 ones from ELODIE + 17 ones from CORALIE) for the star HD37124 is analysed. Two families of dynamically stable high-eccentricity orbital solutions for the planetary system are found. In the first one, the outer planets c and d are trapped in the 2/1 mean-motion resonance. The second family of solutions corresponds to the 5/2 mean-motion resonance between these planets. In both families, the planets are locked in (or close to) an apsidal corotation resonance. In the case of the 2/1 MMR, it is an asymmetric apsidal corotation (with the difference between the longitudes of periastra Δω60\Delta\omega\sim 60^\circ), whereas in the case of the 5/2 MMR it is a symmetric antialigned one (Δω=180\Delta\omega = 180^\circ). It remains also possible that the two outer planets are not trapped in an orbital resonance. Then their orbital eccentricities should be relatively small (less than, say, 0.15) and the ratio of their orbital periods is unlikely to exceed 2.32.52.3-2.5.Comment: 28 pages, 10 figures, 3 tables; Accepted to Celestial Mechanics and Dynamical Astronom

    Predictors of cardiac troponin release after a marathon

    Get PDF
    Objectives: Exercise leads to an increase in cardiac troponin I in healthy, asymptomatic athletes after a marathon. Previous studies revealed single factors to relate to post-race cardiac troponin I levels. Integrating these factors into our study, we aimed to identify independent predictors for the exercise-induced cardiac troponin I release. Design: Observational study. Methods: Ninety-two participants participated in a marathon at a self-selected speed. Demographic data, health status, physical activity levels and marathon experience were obtained. Before and immediately after the marathon fluid intake was recorded, body mass changes were measured to determine fluid balance and venous blood was drawn for analysis of high-sensitive cardiac troponin I. Exercise intensity was examined by recording heart rate. We included age, participation in previous marathons, exercise duration, exercise intensity and hydration status (relative weight change) in our model as potential determinants to predict post-exercise cardiac troponin I level. Results: Cardiac troponin I increased significantly from 14. ±. 12. ng/L at baseline to 94. ±. 102. ng/L post-race, with 69% of the participants demonstrating cardiac troponin I levels above the clinical cut-off value (40. ng/L) for an acute myocardial infarction. Linear backward regression analysis identified younger age (β=. -0.27) and longer exercise duration (β=. 0.23) as significant predictors of higher post-race cardiac troponin I levels (total r=. 0.31, p<. 0.05), but not participation in previous marathons, relative weight change and exercise intensity. Conclusions: We found that cardiac troponin I levels significantly increased in a large heterogeneous group of athletes after completing a marathon. The magnitude of this response could only be partially explained, with a lower age and longer exercise duration being related to higher post-race cardiac troponin I levels

    Search for W' bosons decaying to an electron and a neutrino with the D0 detector

    Get PDF
    This Letter describes the search for a new heavy charged gauge boson W' decaying into an electron and a neutrino. The data were collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of about 1 inverse femtobarn. Lacking any significant excess in the data in comparison with known processes, an upper limit is set on the production cross section times branching fraction, and a W' boson with mass below 1.00 TeV can be excluded at the 95% C.L., assuming standard-model-like couplings to fermions. This result significantly improves upon previous limits, and is the most stringent to date.Comment: submitted to Phys. Rev. Let
    corecore