605 research outputs found

    Microbial diversity of the glass sponge Vazella pourtalesii in response to anthropogenic activities

    Get PDF
    Establishment of adequate conservation areas represents a challenging but crucial task in the conservation of genetic diversity and biological variability. Anthropogenic pressures on marine ecosystems and organisms are steadily increasing. Whether and to what extent these pressures influence marine genetic biodiversity is only starting to be revealed. Using 16S rRNA gene amplicon sequencing, we analysed the microbial community structure of 33 individuals of the habitat-forming glass sponge Vazella pourtalesii, as well as reference seawater, sediment, and biofilm samples. We assessed how two anthropogenic impacts, i.e. habitat destruction by trawling and artificial substrate provision (moorings made of composite plastic), correspond with in situ V. pourtalesii microbiome variability. In addition, we evaluated the role of two bottom fishery closures in preserving sponge-associated microbial diversity on the Scotian Shelf, Canada. Our results illustrate that V. pourtalesii sponges collected from pristine sites within fishery closures contained distinct and taxonomically largely novel microbial communities. At the trawled site we recorded significant quantitative differences in distinct microbial phyla, such as a reduction in Nitrospinae in sponges and environmental references. Individuals of V. pourtalesii growing on the mooring were significantly enriched in Bacteroidetes, Verrucomicrobia and Cyanobacteria in comparison to sponge individuals growing on the natural seabed. Due to a concomitant enrichment of these taxa in the mooring biofilm, we propose that biofilms on artificial substrates may ‘prime’ sponge-associated microbial communities when small sponges settle on such substrates. These observations likely have relevant management implications when considering the increase of artificial substrates in the marine environment, e.g., marine litter, off-shore wind parks, and petroleum platforms

    Decoherence on a two-dimensional quantum walk using four- and two-state particle

    Full text link
    We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position degree of freedom and between the two spatial (xyx-y) degrees of freedom using measurement induced disturbance (MID), we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks breakdown for the Grover walk, adding to the various other advantages of using two-state particles over four-state particles.Comment: 12 pages, 16 figures, In Press, J. Phys. A: Math. Theor. (2013

    A Microbial Nitrogen Engine Modulated by Bacteriosyncytia in Hexactinellid Sponges: Ecological Implications for Deep-Sea Communities

    Get PDF
    Hexactinellid sponges are common in the deep sea, but their functional integration into those ecosystems remains poorly understood. The phylogenetically related species Schaudinnia rosea and Vazella pourtalesii were herein incubated for nitrogen and phosphorous, returning markedly different nutrient fluxes. Transmission electron microscopy (TEM) revealed S. rosea to host a low abundance of extracellular microbes, while Vazella pourtalesii showed higher microbial abundance and hosted most microbes within bacteriosyncytia, a novel feature for Hexactinellida. Amplicon sequences of the microbiome corroborated large between-species differences, also between the sponges and the seawater of their habitats. Metagenome-assembled genome of the V. pourtalesii microbiota revealed genes coding for enzymes operating in nitrification, denitrification, dissimilatory nitrate reduction to ammonium, nitrogen fixation, and ammonia/ammonium assimilation. In the nitrification and denitrification pathways some enzymes were missing, but alternative bridging routes allow the microbiota to close a N cycle in the holobiont. Interconnections between aerobic and anaerobic pathways may facilitate the sponges to withstand the low-oxygen conditions of deep-sea habitats. Importantly, various N pathways coupled to generate ammonium, which, through assimilation, fosters the growth of the sponge microbiota. TEM showed that the farmed microbiota is digested by the sponge cells, becoming an internal food source. This microbial farming demands more ammonium that can be provided internally by the host sponges and some 2.6 million kg of ammonium from the seawater become annually consumed by the aggregations of V. pourtalesii. Such ammonium removal is likely impairing the development of the free-living bacterioplankton and the survival chances of other sponge species that feed on bacterioplankton. Such nutritional competitive exclusion would favor the monospecific character of the V. pourtalesii aggregations. These aggregations also affect the surrounding environment through an annual release of 27.3 million kg of nitrite and, in smaller quantities, of nitrate and phosphate. The complex metabolic integration among the microbiota and the sponge suggests that the holobiont depends critically on the correct functioning of its N-driven microbial engine. The metabolic intertwining is so delicate that it changed after moving the sponges out of their habitat for a few days, a serious warning on the conservation needs of these sponge aggregations

    Ecosystem Consequences of Plant Genetic Divergence with Colonization of New Habitat

    Get PDF
    When plants colonize new habitats altered by natural or anthropogenic disturbances, those individuals may encounter biotic and abiotic conditions novel to the species, which can cause plant functional trait divergence. Over time, site-driven adaptation can give rise to population-level genetic variation, with consequences for plant community dynamics and ecosystem processes. We used a series of 3000-yr-old, lava-created forest fragments on the Island of Hawai`i to examine whether disturbance and subsequent colonization can lead to genetically differentiated populations, and where differentiation occurs, if there are ecosystem consequences of trait-driven changes. These fragments are dominated by a single tree species, Metrosideros polymorpha (Myrtaceae) or ʻohiʻa, which have been actively colonizing the surrounding lava flow created in 1858. To test our ideas about differentiation of genetically determined traits, we (1) created rooted cuttings of ʻohiʻa individuals sampled from fragment interiors and open lava sites, raised these individuals in a greenhouse, and then used these cuttings to create a common garden where plant growth was monitored for three years; and (2) assessed genetic variation and made QST/FST comparisons using microsatellite repeat markers. Results from the greenhouse showed quantitative trait divergence in plant height and pubescence across plants sampled from fragment interior and matrix sites. Results from the subsequent common garden study confirmed that the matrix environment can select for individuals with 9.1% less shoot production and 17.3% higher leaf pubescence. We found no difference in molecular genetic variation indicating gene flow among the populations. The strongest QST level was greater than the FST estimate, indicating sympatric genetic divergence in growth traits. Tree height was correlated with ecosystem properties such as soil carbon and nitrogen storage, soil carbon turnover rates, and soil phosphatase activity, indicating that selection for growth traits will influence structure, function, and dynamics of developing ecosystems. These data show that divergence can occur on centennial timescales of early colonization

    Semi-parametric modeling of SARS-CoV-2 transmission in Orange County, California using tests, cases, deaths, and seroprevalence data

    Full text link
    Mechanistic modeling of SARS-CoV-2 transmission dynamics and frequently estimating model parameters using streaming surveillance data are important components of the pandemic response toolbox. However, transmission model parameter estimation can be imprecise, and sometimes even impossible, because surveillance data are noisy and not informative about all aspects of the mechanistic model. To partially overcome this obstacle, we propose a Bayesian modeling framework that integrates multiple surveillance data streams. Our model uses both SARS-CoV-2 diagnostics test and mortality time series to estimate our model parameters, while also explicitly integrating seroprevalence data from cross-sectional studies. Importantly, our data generating model for incidence data takes into account changes in the total number of tests performed. We model transmission rate, infection-to-fatality ratio, and a parameter controlling a functional relationship between the true case incidence and the fraction of positive tests as time-varying quantities and estimate changes of these parameters nonparameterically. We apply our Bayesian data integration method to COVID-19 surveillance data collected in Orange County, California between March, 2020 and March, 2021 and find that 33-62% of the Orange County residents experienced SARS-CoV-2 infection by the end of February, 2021. Despite this high number of infections, our results show that the abrupt end of the winter surge in January, 2021, was due to both behavioral changes and a high level of accumulated natural immunity.Comment: 37 pages, 16 pages of main text, including 5 figures, 1 tabl

    The Fission Yeast XMAP215 Homolog Dis1p Is Involved in Microtubule Bundle Organization

    Get PDF
    Microtubules are essential for a variety of fundamental cellular processes such as organelle positioning and control of cell shape. Schizosaccharomyces pombe is an ideal organism for studying the function and organization of microtubules into bundles in interphase cells. Using light microscopy and electron tomography we analyzed the bundle organization of interphase microtubules in S. pombe. We show that cells lacking ase1p and klp2p still contain microtubule bundles. In addition, we show that ase1p is the major determinant of inter-microtubule spacing in interphase bundles since ase1 deleted cells have an inter-microtubule spacing that differs from that observed in wild-type cells. We then identified dis1p, a XMAP215 homologue, as factor that promotes the stabilization of microtubule bundles. In wild-type cells dis1p partially co-localized with ase1p at regions of microtubule overlap. In cells deleted for ase1 and klp2, dis1p accumulated at the overlap regions of interphase microtubule bundles. In cells lacking all three proteins, both microtubule bundling and inter-microtubule spacing were further reduced, suggesting that Dis1p contributes to interphase microtubule bundling

    Consensus-based guidance for conducting and reporting multi-analyst studies

    Get PDF
    International audienceAny large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research

    Constraints on jet quenching in p-Pb collisions at root s(NN)=5.02 TeV measured by the event-activity dependence of semi-inclusive hadron-jet distributions

    Get PDF
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOThe ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high-transverse momentum trigger hadron in p-Pb collisions at root s(NN) = 5.02TeV. Jets are reconstructed from charged-particle tracks using the anti-k(T) algorithm with resolution parameter R = 0.2 and 0.4. A data-driven statistical approach is used to correct the uncorrelated background jet yield. Recoil jet distributions are reported for jet transverse momentum 15 < p(T,jet)(ch) < 50 GeV/c and are compared in various intervals of p-Pb event activity, based on charged-particle multiplicity and zero-degree neutral energy in the forward (Pb-going) direction. The semi-inclusive observable is self-normalized and such comparisons do not require the interpretation of p-Pb event activity in terms of collision geometry, in contrast to inclusive jet observables. These measurements provide new constraints on the magnitude of jet quenching in small systems at the LHC. In p-Pb collisions with high event activity, the average medium-induced out-of-cone energy transport for jets with R = 0.4 and 15 < p(T,jet)(ch) < 50 GeV/c is measured to be less than 0.4 GeV/c at 90% confidence, which is over an order of magnitude smaller than a similar measurement for central Pb-Pb collisions at root s(NN) = 2.76 TeV. Comparison is made to theoretical calculations of jet quenching in small systems, and to inclusive jet measurements in p-Pb collisions selected by event activity at the LHC and in d-Au collisions at RHIC.78395113CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOSem informaçãoSem informaçãoSem informaçãoAgências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig

    Inclusive J/ψ production at forward and backward rapidity in p-Pb collisions at √sNN=8.16 TeV

    Get PDF
    Inclusive J/psi production is studied in p-Pb interactions at a centre-of-mass energy per nucleon-nucleon collision sqrt(s_NN) = 8.16TeV, using the ALICE detector at the CERN LHC. The J/psi meson is reconstructed, via its decay to a muon pair, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and -4.46 < ycms < -2.96, where positive and negative ycms refer to the p-going and Pb-going direction, respectively. The transverse momentum coverage is pT < 20 GeV/c. In this paper, ycms- and pT-differential cross sections for inclusive J/psi production are presented, and the corresponding nuclear modification factors RpPb are shown. Forward results show a suppression of the J/psi yield with respect to pp collisions, concentrated in the region pT < 5 GeV/c. At backward rapidity no significant suppression is observed. The results are compared to previous measurements by ALICE in p-Pb collisions at sqrt(s_NN) = 5.02TeV and to theoretical calculations. Finally, the ratios RFB between forward- and backward-ycms RpPb values are shown and discussed

    Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at √sNN=5.02 and 2.76 TeV

    Get PDF
    Measurements of anisotropic flow coefficients with two- and multi-particle cumulants for inclusive charged particles in Pb-Pb collisions at sqrt(s_NN) = 5.02 and 2.76TeV are reported in the pseudorapidity range |eta|< 0.8 and transverse momentum 0.2 < pT < 50 GeV/c. The full data sample collected by the ALICE detector in 2015 (2010), corresponding to an integrated luminosity of 12.7 (2.0) ub^-1 in the centrality range 0-80%, is analysed. Flow coefficients up to the sixth flow harmonic (v6) are reported and a detailed comparison among results at the two energies is carried out. The pT dependence of anisotropic flow coefficients and its evolution with respect to centrality and harmonic number n are investigated. An approximate power-law scaling of the form vn(pT) ~ pT^(n/3) is observed for all flow harmonics at low pT (0.2 < pT < 3 GeV/c). At the same time, the ratios vn/vm^(n/m) are observed to be essentially independent of pT for most centralities up to about pT = 10 GeV/c. Analysing the differences among higher-order cumulants of elliptic flow (v2), which have different sensitivities to flow fluctuations, a measurement of the standardised skewness of the event-by-event v2 distribution P(v2) is reported and constraints on its higher moments are provided. The Elliptic Power distribution is used to parametrise P(v2), extracting its parameters from fits to cumulants. The measurements are compared to different model predictions in order to discriminate among initial-state models and to constrain the temperature dependence of the shear viscosity to entropy-density ratio
    corecore