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Abstract. When plants colonize new habitats altered by natural or anthropogenic disturbances, those
individuals may encounter biotic and abiotic conditions novel to the species, which can cause plant
functional trait divergence. Over time, site-driven adaptation can give rise to population-level genetic
variation, with consequences for plant community dynamics and ecosystem processes. We used a series of
3000-yr-old, lava-created forest fragments on the Island of Hawai`i to examine whether disturbance and
subsequent colonization can lead to genetically differentiated populations, and where differentiation
occurs, if there are ecosystem consequences of trait-driven changes. These fragments are dominated by a
single tree species, Metrosideros polymorpha (Myrtaceae) or ʻ�ohiʻa, which have been actively colonizing the
surrounding lava flow created in 1858. To test our ideas about differentiation of genetically determined
traits, we (1) created rooted cuttings of ʻ�ohiʻa individuals sampled from fragment interiors and open lava
sites, raised these individuals in a greenhouse, and then used these cuttings to create a common garden
where plant growth was monitored for three years; and (2) assessed genetic variation and made QST/FST
comparisons using microsatellite repeat markers. Results from the greenhouse showed quantitative trait
divergence in plant height and pubescence across plants sampled from fragment interior and matrix sites.
Results from the subsequent common garden study confirmed that the matrix environment can select for
individuals with 9.1% less shoot production and 17.3% higher leaf pubescence. We found no difference in
molecular genetic variation indicating gene flow among the populations. The strongest QST level was
greater than the FST estimate, indicating sympatric genetic divergence in growth traits. Tree height was
correlated with ecosystem properties such as soil carbon and nitrogen storage, soil carbon turnover rates,
and soil phosphatase activity, indicating that selection for growth traits will influence structure, function,
and dynamics of developing ecosystems. These data show that divergence can occur on centennial
timescales of early colonization.
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INTRODUCTION

The movement of plant species into new habi-
tats can have important evolutionary and ecologi-
cal consequences. For example, when species
colonize new created habitats, as a result of natu-
ral or anthropogenic disturbances, they may
encounter novel biotic and abiotic factors that can
(1) affect their success or failure (Hobbs et al.
2006); (2) influence the evolutionary dynamics of
populations (Holt 2003, Parmesan 2006); and (3)
alter functional phenotypes (Whitham et al. 2006,
Bailey et al. 2014, Read et al. 2014, Schweitzer
et al. 2014, Kinnison et al. 2015). To better predict
the consequences of colonization of new habitats
from the influences of natural disturbance and
global environmental change, understanding how
selection operates during colonization is critical to
correctly interpreting ecosystem consequences of
phenotypic divergence.

The evolution of colonizing plant species has
been examined in the context of local adaptation
(Clausen et al. 1947), coevolution (Carroll et al.
2005), and exotic species invasions (Zenni et al.
2014a). It has become apparent that individuals
colonizing unique ecotypes are phenotypically dif-
ferent from those occurring in source populations
within the previous core range of the species (Phil-
lips et al. 2006, Eckert et al. 2008, Felker-Quinn
et al. 2013). For example, invasive pine trees in
Brazil had distinct phenotypes in colonized vs.
source portions of their range (Zenni et al. 2014b),
suggesting that selective pressures during colo-
nization favored certain traits. Such effects clearly
have important implications for managing inva-
sive species, but beyond the study of invasive
species (see reviews by Buswell et al. 2011, Felker-
Quinn et al. 2013, Moran and Alexander 2014),
surprisingly few studies have examined the evolu-
tionary consequences of colonization by native
species (Foster et al. 2007, Schwarzer et al. 2013,
Hargreaves et al. 2014). This knowledge gap is
notable because such colonization events are
extensive and arguably the most important pro-
cess in primary and secondary succession, as well
as recovery of the Earth’s degraded landscapes
(Sarrazin and Lecomte 2016).

Invasion biology provides important empirical
and theoretical analogs for understanding the
evolutionary consequences of range shifts and
the colonization of new habitat. Dispersal and

colonization are most often considered demo-
graphic processes driven by propagule pressure,
frequently modeled on simulated landscapes
assumed to be homogenous (Travis et al. 2009,
Burton et al. 2010). Because few studies have
examined native species dynamics, we know
much less about how altered environments drive
selection for specific traits and contribute to spe-
cies persistence in newly created habitats (Jump
and Pe~nuelas 2005, Hargreaves et al. 2014). Evi-
dence of rapid evolution in plants is widespread
(Jump and Pe~nuelas 2005, Lau 2008, Strauss et al.
2008, Buswell et al. 2011, Felker-Quinn et al.
2013), suggesting that successful colonization of
novel habitats may result in trait selection and
genetically based functional trait shifts relative to
the source population.
After the introduction of cane toads in Aus-

tralia, subsequent colonization of uninvaded
habitat led to the evolution of increased dispersal
ability along the front of the invasion (Phillips
et al. 2006). In the previously described Brazilian
system, Zenni et al. (2014a, b) demonstrated
rapid evolution of non-native pine trees that
escaped silviculture plantations and colonized
into native Brazilian ecosystems. These examples
point to wide-ranging capacity for rapid evolu-
tion at the colonizing front, and the rapid evolu-
tionary changes that accompany some invasions
can have consequences that alter ecosystems.
With the invasive tallow tree (Sapium sebifera),
new populations of invasive individuals have
evolved lower foliar tannins in the invaded
range, altering plant herbivore interactions and
chemical inputs to soils (Siemann and Rogers
2003). It is changes in traits such as these that can
have large subsequent consequences for ecosys-
tem processes.
Plants possess traits that structure below-

ground communities and influence ecosystem
dynamics (Vitousek et al. 1987, Ohtonen et al.
1999, Bardgett and Wardle 2010, Cutler et al.
2014). For example, Ohtonen et al. (1999) found
that different plant species colonizing a bare soil
drastically changed the belowground microbial
community. Many studies have shown how inva-
sive species can alter their surroundings by dis-
rupting mycorrhizal relationships (Wolfe et al.
2008), changing soil chemistry (Vitousek et al.
1987, G�omez-Aparicio and Canham 2008), and
altering carbon uptake and pool size (see review
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by Peltzer et al. 2010). Aboveground traits, such
as leaf lignin concentrations, can influence
belowground nutrient cycles by altering decom-
position rates and mineralization of organic mat-
ter (Melillo et al. 1982) including within species
(Hobbie et al. 2006). Furthermore, intraspecific
variation in plant functional traits can alter
ecosystem processes (Whitham et al. 2006). For
example, leaf litterfall and subsequent decompo-
sition rates were dependent on variation in leaf
source within the species Alnus rubra (Jackrel
and Wootton 2014). Thus, when colonizing trees
enter new locations, their traits can alter below-
ground ecosystem processes differently than
expected from plants growing in established por-
tions of the range (Wardle et al. 2004, Bardgett
and Wardle 2010).

Metrosideros polymorpha is considered a foun-
dation species because it is one of the few large
trees native to the Hawaiian archipelago and
plays an important role in early colonization of
lava (Percy et al. 2008, Flaspohler et al. 2010).
Metrosideros polymorpha is known to have high
genetic and phenotypic variation and respond
strongly to environmental gradients, such as
those that occur across elevation or substrate age
(Vitousek 2004, Morrison and Stacy 2014, Stacy
et al. 2014). Additionally, genetically based phe-
notypic variation in M. polymorpha has been
shown to influence litter decomposition rates
and soil nutrient dynamics (Vitousek 2004). The
ability to respond to strong environmental gradi-
ents and known links between genetically based
traits and ecosystem function makes M. polymor-
pha an ideal focal plant species for the study of
the evolutionary and ecological consequences of
colonization (Cordell et al. 1998, Treseder and
Vitousek 2001, Martin et al. 2007). To understand
the evolutionary and ecological consequences of
colonization, we examined how adjacent popula-
tions of M. polymorpha varied in functional plant
traits and ecosystem processes along a coloniza-
tion front and strong edaphic and environmental
variation in Hawai`i. Using a field and common
garden approach, we tested two related hypothe-
ses: (1) Functional plant traits within M. polymor-
pha have diverged in newly colonized sites
relative to source populations resulting in differ-
ential establishment and growth and (2) varia-
tion in traits in M. polymorpha in newly colonized
sites results in changes to soil processes.

METHODS

Study system and sites
The Island of Hawai`i is an ideal location to test

the consequences of plant evolution on contempo-
rary timescales. A well-constrained post-volcanic
colonization front allows examination of how
plant traits differ in newly colonized areas and
how these traits influence soil nutrient dynamics
(sensu Treseder and Vitousek 2001). In 1854–1855,
the Mauna Loa volcano erupted, resulting in lava
flows that fragmented forests on its eastern face
(19.67° N, �155.3° E). More than 1000 fragments
(“k�ıpuka” in Hawai`ian) were created by the
eruption, and range in size from 0.01 to over
100 ha, with large abiotic and biotic environmen-
tal differences between the bare substrate of the
matrix and the well-developed, 3000- to 5000-yr
substrates of the k�ıpuka (Raich et al. 1997, Flas-
pohler et al. 2010, Vaughn et al. 2014, Vannette
et al. 2016). These forest fragments persist because
primary succession onto new lava is slow—result-
ing in continuing colonization of the matrix.
The k�ıpuka–matrix comparison is an ideal field

system for studying colonization as an evolution-
ary process. It is a simple and uniform flora
dominated by a single canopy tree species
(M. polymorpha), which comprises >85% of the
basal area across k�ıpuka as well as nearly all sap-
lings in the lava flow matrix (Flaspohler et al.
2010, Vaughn et al. 2014). The k�ıpuka and the
lava flow matrix are adjacent to one another, thus
making these sites ideal for understanding selec-
tion of plant functional phenotypes. All k�ıpuka
and matrix sites in this study occur within a nar-
row geographic area between 1509 and 1637 m
above sea level, and so share similar annual
ambient temperatures (14.0–16.5°C) and precipi-
tation (2400–2900 mm; Western and Juvik 1983,
Vaughn et al. 2014), with lava age in this field
system not correlated with temperature or rain-
fall (Tsujii et al. 2016). Lastly, the primary succes-
sion of trees onto barren basalt lava flows allows
for an examination of the direct effects of plants
on organic matter formation and associated soils.

Functional plant traits
To determine whether there is variation in

functional plant traits and the ecosystem pro-
cesses they mediate for trees in the colonizing
matrix and k�ıpuka populations, 14 k�ıpuka sites
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surrounded by the adjacent matrix were selected
along the Mauna Loa 1855 lava flow. Within each
k�ıpuka site, and also nearby in the surrounding
matrix, 10 randomly selected individual trees
were sampled and measured in the field. Specific
leaf area (SLA), leaf pubescence, and tree height
were measured on all trees in the field. Dry leaf
mass was determined by oven drying samples at
70°C for 48 h before weighing. Specific leaf area
of all k�ıpuka and matrix trees was determined by
calculating the surface area and the mass of three
to five leaves per individual (collected from ter-
minal shoots from multiple locations on a tree).
Leaf pubescence was estimated in the field with
a standardized scale (1–5) by which glabrous
leaves were given a score of 1 and the most pub-
escent leaves were scored 5. Tree heights were
estimated to the closest half meter.

Experimental common garden
To determine whether phenotypic differences

observed in the field were a plastic response to the
environment or resulted from genetic divergence,
we established a common garden with rooted cut-
tings to separate the genetic and environmental
components of functional plant traits that vary in
response to underlying substrate properties of the
k�ıpuka/lava matrix system (Anderson et al. 2014).
Distinct M. polymorpha phenotypes were collected
from k�ıpuka and the surrounding lava matrix in
June 2012. These cuttings were taken from the
same k�ıpuka sites as the field measurements.
However, cuttings from trees on the lava matrix
were sampled along a transect spanning the eleva-
tion of the k�ıpuka study site (1509–1637 m above
sea level), and located between k�ıpuka (therefore
k�ıpuka and lava cuttings were not paired). Ten 15-
cm terminal cuttings from 110 individuals on the
lava matrix and 108 individuals in k�ıpuka were
collected in the field and kept moist and cool until
planting. Tree cuttings were collected from termi-
nal branch tips, and there was no significant dif-
ference in cutting diameter between sites or soil
substrates (data not shown). Cuttings were scored
with pruning shears, and dipped in Hormodin
(indole-3-butyric acid; Hormodin 2; OHP, Main-
land, Pennsylvania, USA). The lower leaves were
removed and remaining leaves were cut in half (to
reduce water loss), inserted into 1.5-L pots with a
standard potting mix (equal parts of peat, perlite,
and vermiculite), and placed under a misting

bench (misted every 20 min during the day) in a
greenhouse facility at the Institute of Pacific
Islands Forestry in Hilo, Hawaii. To decrease any
potential variation in stored nutrients in the cut
branches, successfully rooted cuttings were re-
planted in the same potting mix plus an addition
of 3 g of 13:13:13 nitrogen/phosphorus/potassium
slow-release fertilizer pellets one year prior to
measuring traits. The greenhouse trees were ran-
domized into four blocks and rotated periodically
to avoid any positional environmental effects. In
June of 2013, stem diameter and length, SLA, and
leaf pubescence were measured on the new
growth. In June of 2014, tree height was measured
as the trees were being planted into a common
garden in the field at the Institute of Pacific Island
Forestry’s Laup�ahoehoe Science and Education
Center (LSEC, Laup�ahoehoe, Hawaii, USA) and
measured again in 2015. To determine whether
underlying genetic variation was responsible for
differences in tree height, only the individuals
who survived to the 2015 measurement were used
in the analysis of the 2014 height data. The com-
mon garden was designated into four random
blocks on a site where slope varies from 2° to 15°.
Trees were spaced three meters from each other in
a grid and each grid was surrounded by an outer
row of edge trees. Within each block, a single
replicate of each genotype was planted at a ran-
dom location with ~10 g of NPK 20:20:20 fertilizer
in each tree hole.

Plant molecular analyses
To examine genetic structure and gene flow

between k�ıpuka and matrix trees in this system,
we used 11 microsatellite markers targeted at
repeat regions of the genome (Crawford et al.
2008). Leaves from 168 tree genotypes from the
common garden were successfully extracted and
genotyped (74 matrix and 94 k�ıpuka genotypes).
Powdered samples of leaf tissue were used to
extract genomic DNA (gDNA). Tissues were
ground to a fine powder using a ball mill (Spex
mixer/mill 8000D; Spex Sample Prep, Metuchen,
New Jersey, USA). Approximately 0.2 g of leaf
powder was used to extract gDNA with the
Qiagen DNeasy Plant Mini Kit (Qiagen, Valencia,
California, USA) according to the manufacturer’s
instructions, except the first incubation step was
conducted overnight (a minimum of 12 h).
Although gDNAyields were low (some <5 ng/lL),
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samples were diluted 1/10 (one part gDNA into
nine parts molecular grade water) to minimize
the effects of polymerase chain reaction (PCR)
inhibitors for downstream reactions. We gener-
ated multi-locus genotypes for each sample using
11 presumably neutral microsatellite markers that
were selected from Crawford et al. (2008;
Appendix S1: Table S1). All PCRs were carried
out in 10 lL volumes containing the following
reagents (given in final concentrations): 1–5 ng of
DNA template, 19 PCR buffer, 2.5 mmol/L
MgCl2, 0.2 mmol/L dNTPs, 0.1 U Platinum Taq
polymerase (Invitrogen, Carlsbad, California,
USA), and 0.4 lmol/L of each primer, except one
marker (MePo514), which was changed to
0.1 lmol/L. A final concentration of 0.5 lg/lL
bovine serum albumin (BSA) was added to
increase target specificity and PCR yield for four
markers (MePo504, MePo507, MePo509, and
MePo510). PCRs were thermocycled according to
the following conditions: 10 min at 95°C to
release the Platinum Taq antibody, followed by 40
cycles of 60 s at 94°C, 30 s at the annealing tem-
perature (Ta), and 30 s at 72°C. The Ta, mixing
strategy (multiplex vs. singleplex loci and/or pool-
ing scheme), dilution, and forward primer dye for
each locus are provided in Appendix S1: Table S1.
Diluted PCR products were electrophoresed on
an ABI3130 sequencer with LIZ-1200 size stan-
dard and analyzed using the software GENE-
MAPPER v4.0 (Applied Biosystems, Foster City,
California, USA). All genotypes were manually
checked for accuracy, and positive controls were
included on all runs. We did not observe amplifi-
cation in our negative control reactions (water as
template). We also ran independent PCR repli-
cates on 10% of the trees to check for genotyping
errors, and no errors were observed.

Soil processes
To determine the variation in soils, we sampled

along the constrained colonization sites where
macro-environmental conditions are similar (Flas-
pohler et al. 2010, Tsujii et al. 2016). Soils were
collected to a depth up to 20 cm under each of the
M. polymorpha trees in the k�ıpuka and matrix that
were measured for field traits. Soils were collected
within 0.25 m from the trunk, placed in plastic
bags, and stored on ice in a cooler until the end of
a day in the field when soils were transferred to a
4°C refrigerator. These soils were almost entirely

organic matter, especially in the matrix sites,
where soil collection involved scraping a layer of
organic material off of basalt bedrock (see
Appendix S1: Fig. S1 for detailed explanation and
photos of the sites). Samples were shipped on dry
ice by two-day mail to a laboratory at the Univer-
sity of Tennessee where they were stored at 4°C
until processed the following day. Processing
included sieving soils through a 4-mm mesh and
dividing samples for multiple analyses. Soil sub-
samples were used for fluorometric enzyme
assays, soil gravimetric water content, pH, total
soil carbon (C) and nitrogen (N), and laboratory
incubations to assess C decomposition rates.
Soils were assayed for activities of the following

enzymes: b-1,4-glucosidase (EC 0.2.1.21), a-1,
4-glucosidase (EC 3.2.1.20), b-1,4-N-acetylglucosa-
minidase (EC 3.1.6.1), acid phosphatase (EC
3.1.3.2), phenol oxidase (EC 1.10.3.2), and peroxi-
dases (EC 1.11.1.7; Stritar et al. 2010). For these
analyses, 1 g of each soil was diluted with
125 mL of 50 lmol/L sodium acetate buffer
(pH = 5) and mixed on a stir plate for 2 min, thor-
oughly suspending the soil in buffer. Enzyme
assays were undertaken with eight analytical
replicates for b-glucosidase, a-glucosidase, b-1,
4-N-acetylglucosaminidase, and phosphatase.
Phenol oxidase/peroxidases activities were mea-
sured with 16 analytic replicates. The b-glucosi-
dase, a-glucosidase, N-acetylglucosaminidase,
and phosphatase activities were determined by
fluorometric response of the 4-methylumbelliferyl
(MUB) substrate (excitation at 365 nm, emission
at 450 nm, on a BioTek Synergy HT microplate
reader; BioTek, Winooski, Vermont, USA). Phenol
oxidase/peroxidase activities were determined
by colorimetric analysis of the L-3,4-dihydroxy-
phenylalanine substrate (DOPA; Absorbance at
460 nm, SpectraMax Plus384 spectrophotometer;
Molecular Devices Corp., Sunnyvale, California,
USA). N-acetylglucosaminidase and phosphatase
were incubated for 30 min prior to being read,
b-glucosidase and a-glucosidase were incubated
for 2 h, while phenol oxidase and peroxidase
were incubated for 24 h.
Soil C and N concentrations were determined

on finely ground subsamples (mortar and pestle)
by dry combustion (Flash EA 1112 CNH ana-
lyzer; Thermo Fisher Scientific Inc., Waltham,
Massachusetts, USA). Gravimetric water content
was assayed by drying soil samples in a Thermo
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Isotherm soil oven at 105°C for 48 h and compar-
ing wet and dry masses. Soil pH was determined
using a 0.1 mol/L CaCl2 extraction and measured
with a Denver Instruments pH probe and reader
(Sartorius AG, Goettingen, Germany).

Laboratory incubations were conducted over a
30-d period to determine differences in soil C use
by microorganisms, and to examine variation in
soil C decomposition rates between k�ıpuka and
matrix soils under common conditions (following
methods in Schweitzer et al. 2004). Each sieved
soil sample was split into two 10 g subsamples
and placed into 125-mL specimen cups and soils
were brought up to field capacity (based on field
GWC measurements) with the addition of deion-
ized water. All cups were placed into 0.994-L
glass jars also containing ~30 mL of deionized
water to maintain humidity. The jars were left
sealed to incubate in the dark at 22°C. Carbon
decomposition rates (g CO2-C�g�1 soil C�d�1)
were measured by comparing carbon dioxide
(CO2) in all jars to a reference at days 1, 2, 4, 8, 14,
22, 27, and 30 by direct injection using an infrared
gas analyzer (LI-6400XT; LI-COR, Lincoln,
Nebraska, USA). Presented carbon decomposition
rates represent 30-d cumulative totals.

Statistical analysis
To address whether functional plant pheno-

types in the field varied in response to substrate
type, we took a restricted maximum-likelihood
approach, predicting height, pubescence, and
SLAwith substrate location (k�ıpuka or matrix) as
a fixed effect and site as a random effect. Com-
mon garden data for these three traits were ana-
lyzed separately using a nested analysis of
variance with genotype nested within substrate
type (k�ıpuka or matrix). Foliar nitrogen and
foliar carbon were also examined as a response
to substrate type in the field with a mixed-effect
model like the one above. Hypothesis testing on
all of these mixed-effect models was done using
a likelihood ratio test between full and null mod-
els with an alpha value of 0.05. The R statistical
package was used for all analyses (R Core Team
2014). The lme4 package (Bates et al. 2015) was
used for building statistical models using ran-
dom effects (varying intercepts).

To understand the potential role of gene flow
and natural selection, the common garden
quantitative trait differences were compared to

microsatellite loci. To determine whether the
variation in plant phenotype is due to non-ran-
dom genetic factors, we compared trait variation
(QST) and genetic variation (FST), calculated by
comparing variation among k�ıpuka and matrix
populations to variation within these popula-
tions using the following equation:

QST ¼ rB
rBþ 2rW

where rB is the variance measured among popu-
lations and rW is the variance within populations.
A significant difference (a = 0.05) in average com-
mon garden traits between k�ıpuka plants and
matrix plants would allow us to reject the null
hypothesis that all variation observed in the field
is due to phenotypic plasticity. The quantitative
variation was also calculated for each trait to
examine the variance accounted for by k�ıpuka
and matrix substrate (QST). Secondly, an analysis
of molecular variance (AMOVA) was conducted
on the 11 microsatellite loci to determine the
genetic structuring of the populations. Low vari-
ance between populations would suggest that
there is little random genetic variance (the null
expectation of testing for genetic drift). Compar-
ison of molecular variance at neutral loci (FST) and
quantitative trait variance (QST) can discriminate
between selection and drift as the driving evolu-
tionary force (Leinonen et al. 2013). For example,
aQST value greater than an FSTwould suggest that
trait variation between populations is higher than
would be expected by random processes alone.
This would suggest that selection on the mea-
sured traits is occurring. Paired with a significant
difference in the trait value means, we would be
able to infer directional selection on plant traits.
To determine whether soils vary in response to

phenotypic differences among plants, we used a
mixed-effect model predicting soil C, soil N, soil
pH, soil C mineralization with substrate as a
fixed effect and site as a random effect. Soil
potential enzyme activity data were standard-
ized by soil C before being analyzed between
k�ıpuka and matrix soils like above with a mixed-
effect model. All of these soil properties were
also compared to tree height using an analysis of
covariance, where tree height in the field was a
continuous variable, substrate type was a cate-
gorical variable, and the soil chemistry data were
continuous responses.

 ❖ www.esajournals.org 6 May 2017 ❖ Volume 8(5) ❖ Article e01743

MUELLER ET AL.



RESULTS

Observations from both the field site and
common garden plantings show differences in
plant growth traits. Field observations show
k�ıpuka trees were 111.8% taller than matrix
trees (Table 1, Fig. 1a). Shoot length, measured
in the greenhouse, was consistent with field
height observations, with shoot lengths in
k�ıpuka-derived plants 53% greater than matrix-
derived plants (Fig. 1b). This pattern was main-
tained in the common garden where k�ıpuka
trees were 9.2% taller in 2014 (Fig. 1c) and 9.3%
taller than matrix trees in 2015 (Fig. 1d). These
results highlight a consistent pattern of genetic
divergence in plant height between the k�ıpuka
and matrix individuals.

Similarly, in the field, we found that other
traits differed between trees growing on the two
substrate types. Matrix trees were 28.5% more
pubescent (Table 1) than trees in the k�ıpuka.
Greenhouse pubescence on newly emerged
leaves was 17.3% higher in the matrix popula-
tions. However, leaf pubescence in the field and
greenhouse was weakly correlated, suggesting
greater plasticity for this trait. Although in situ
SLA was observed to be 27.9% greater in k�ıpuka
vs. matrix trees, there were no significant differ-
ences observed in the common garden after one
year of growth, although there appeared to be a
trend in this direction. Overall, our quantitative
trait analyses support the hypothesis that colo-
nizing trees have unique growth phenotypes, but
other traits may be more plastic.

Microsatellite data were used to determine
whether there was any population genetic struc-
ture between the k�ıpuka and matrix sites. We
found no difference in population genetic structure
among the k�ıpuka/matrix pairs (PhiPT = 0.001,
P = 0.46), indicating extensive genetic exchange
between the sites (indeed, k�ıpuka trees likely are
the source of matrix populations), and a lack of
genetic divergence at neutral loci. Allelic richness
was high at many microsatellites (range of 5–49
alleles, mean = 18 alleles per locus) and observed
heterozygosity was accordingly high in both
k�ıpuka and matrix populations (HO = 0.67 for
both).

As shown above, the k�ıpuka and matrix
populations are genetically indistinguishable at
11 microsatellite loci, suggesting that k�ıpuka

and matrix populations belong to a single inter-
breeding population. The quantitative trait vari-
ance (QST) for stem growth in 2013 is 0.323, 0.343
for tree height in 2014, and 0.333 for the tree
height in 2015, showing high levels of differentia-
tion between the populations (similar to Alberto
2013) that is much greater than the FST estimate.

Soil properties
There were five key differences in soil proper-

ties associated with trees from k�ıpuka and matrix
sites. Because there was no soil before coloniza-
tion of the matrix (i.e., the matrix is covered by
bare basalt; see Appendix S1: Fig. S1), we make
the assumption that effects on soil organic matter

Table 1. Variation in plant traits in the field and
common garden.

Response P-value % Change in matrix

Plant functional traits
Pubescence <0.0001 25.8
Height <0.0001 �111.8
Specific leaf area <0.0001 �27.9

Chemistry
Foliar nitrogen 0.99 0
Foliar carbon <0.0001 1.6
Soil total nitrogen <0.0001 �18.2
Soil total carbon 0.0071 �4.0
Soil pH <0.0001 7.2
Soil CO2 incubation 0.0495 10.8
b-glucosidase 0.0941 33.8
a-glucosidase 0.4565 33.6
N-acetylglucosaminidase 0.8838 0.67
Phosphatase 0.0192 47.3
Phenol oxidase 0.0603 159.4

Plant functional traits
Pubescence 2013 <0.0001 17.3
Specific leaf area 2013 0.0917 �2.5
Stem diameter 2013 0.1383 �3.2
Shoot length 2013 <0.0001 �46.9
Height 2014 0.0178 �9.2
Height 2015 0.0424 �9.3

Notes: Analysis of variance for field observations (Field
2012) and related common garden traits (CG 2013–2015).
P-values (P) are shown along with the percent difference
between the traits from trees from the k�ıpuka and surround-
ing lava matrix. Negative percent differences represent
situations where the trait or response is greater in the k�ıpuka
and positive percent differences represent higher matrix
values. Growth in the field was estimated with height, while
shoot length was used to estimate growth in the greenhouse.
Growth measurements were taken in a common environment
in Hawai`i for three consecutive years; 2013 in the greenhouse
and 2014 and 2015 in the outplanted common garden. Bolded
P-values represent significant effects at a = 0.05.
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in the matrix are due to plant inputs and thus
differences in soil properties are due to plants
inputs as well as variation in environmental con-
ditions (e.g., temperature, light) that can alter soil
microbial activities. Soils collected under trees
from k�ıpuka had higher total soil N (D18.2%,
Table 1, Fig. 2a) and total soil C (D4.0%, Fig. 2b)
and a 7.2% lower pH (Fig. 2c). K�ıpuka soils were
also 10.8% slower at mineralizing C in the labo-
ratory (Fig. 2e) that along with the total soil C
data indicate higher C storage in k�ıpuka soils
relative to those in the colonizing matrix. Phos-
phatase activity, when standardized by total soil
C, was 47.3% greater in soils collected from
under lava matrix plants (Fig. 2d), likely to
utilize the phosphorus (P) bound in the young

soils. Gravimetric water content and all other
enzyme activities (b-glucosidase, a-glucosidase,
N-acetylglucosaminidase, and phenol oxidase)
were not significantly different between the
matrix and k�ıpuka soils. These data suggest that
overall k�ıpuka and matrix phenotypes and envi-
ronmental conditions have differential impacts
on belowground processes.
The range of phenotypic variation in growth

across all field sites is correlated with variation in
soil properties. Despite the coarse estimates of
plant growth in the field, changes in soil pro-
cesses based on tree height independent of sub-
strate were also observed (Table 2, Fig. 2f–j),
suggesting that tree phenotypes associated
with colonization are altering soils. Soil N,
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Fig. 1. Colonization results in variation in plant growth traits. In both the field (a) and a common garden
experiment across years (b–d), trees that colonized the lava matrix have significantly reduced growth (i.e., shorter
total heights in field/common garden and shoot length in the greenhouse). Boxes represent the distribution of the
first to third quartiles of the data, while tails represent 95% confidence intervals. Each panel is showing a signifi-
cant difference between means at an alpha value a = 0.05.
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phosphatase activity, and C decomposition rates
significantly increased with tree height, but did
not vary significantly with location, suggesting
that plant traits were more important than site
conditions in altering these particular soil vari-
ables. Soil pH was the only soil trait measured
that was significantly affected by the interaction
between tree height and location, increasing as
trees grew taller in the matrix, but not changing
in the k�ıpuka.

DISCUSSION

Our results show that strong edaphic and envi-
ronmental filters can drive plant genetic diver-
gence and shifts in associated soil processes,
despite strong gene flow. Colonization of the new
lava matrix substrate resulted in significant geneti-
cally based phenotypic changes in functional
plant traits, including 9% shorter plants and 17%
more pubescence on leaves. A high QST value rela-
tive to a low FST for stem growth and height sup-
ports the hypothesis that directional selection of
colonizing phenotypes is leading to evolution of
plant traits on the lava matrix (Storz 2002, Frei
et al. 2014). The reduction in aboveground growth
in the matrix is correlated with changes in the
belowground ecosystem relative to k�ıpuka trees,
leading to significant decreases in total soil C, N,
and acidity, whereas phosphorus availability and
carbon decomposition increased. Variation in soil
chemistry and microbial function along tree size
gradients suggests that tree growth has some level
of control over belowground communities, likely
via the amount of carbon allocated belowground.

The variation in growth (of new shoots)
between k�ıpuka and matrix trees was consistent
in a common garden over two years, suggesting a
genetic basis to plant height differences. The alter-
native explanation of different starting conditions
is minimized because all cuttings were the same
length and basal diameter, and thus began grow-
ing with the same starting conditions. Although
we cannot eliminate other hormonal maternal
effects, the fact that the surviving trees showed lit-
tle variation across time, when measuring traits
on new growth, suggests that this effect is mini-
mal or has been stabilized. If the pattern were
driven entirely by unequal starting conditions, and
not underlying genetic variation, we would expect
the difference in heights to continue to decrease.

Soils are a consistent selective filter on plant
populations, always interacting with plants, and
potentially having dramatic consequences for
their evolution. The most obvious examples are
serpentine soils, which are hotspots of plant
diversity that often contain more trait variation
than surrounding locations (Brady et al. 2005,
Harrison et al. 2006). Soil gradients such as those
of mine tailings and serpentine soils are strong
selective filters along which evolution of distinct
plant phenotypes occurs. The difficulty of grow-
ing in toxic soils not only leads to novel traits
(Brady et al. 2005), but also alters the rates of
future evolution of serpentine endemics (Ana-
cker et al. 2010). However, plant evolution across
soil gradients is not limited to cases of extreme
toxicity, and the evolution of locally adapted
phenotypes is commonly due to soil gradients
with different available resources (Chapin et al.
1993, Treseder and Vitousek 2001). For example,
across a gradient of soil nitrogen in Hawai`i,
M. polymorpha showed distinct genetic separa-
tion among sites along with variation in traits
associated with nitrogen cycling (Treseder and
Vitousek 2001). Furthermore, a recent meta-ana-
lysis has shown that species growth response to
soil N is better predicted by a phylogenetic
approach that incorporates natural selection into
models than only incorporating genetic drift
(Wooliver et al. 2016). Soils, therefore, can have
lasting evolutionary effects on plant traits, not
just in extreme examples of toxicity but also
along common ecological gradients.
The data shown here show genetically based

functional trait variation in an admixed popula-
tion with complete gene flow, suggesting that
sympatric colonization/expansion can also lead
to quantitative genetic change. Although inva-
sion is largely an allopatric process (Felker-
Quinn et al. 2013), colonization of novel habitats
can be sympatric, as seen in expansion fronts
(Phillips et al. 2006, Eckert et al. 2008). Unlike
allopatric processes, when populations are close
geographically, the potential for genetic exchange
is high and therefore, natural selection would
need to be strong to drive differences among
populations. In the examples that exist, it is clear
that colonizing individuals are genotypically and
phenotypically different than those individuals
that exist in the core of the species range (Phillips
et al. 2006, Eckert et al. 2008) and that evolution
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in sympatry may be more common than cur-
rently appreciated. For example, a meta-analysis
by Eckert et al. (2008) shows that populations at
range edges are likely to be more genetically
differentiated.

The colonizing individuals in this study
demonstrate variation in leaf pubescence and
growth for three years in a common garden envi-
ronment, showing that colonization during pri-
mary succession is an evolutionary force even in
the face of gene flow. As the QST/FST comparisons
in growth traits show, the quantitative trait varia-
tion is proportionally greater than neutral genetic
variation, indicating directional selection on
growth (Storz 2002, Leinonen et al. 2013, Frei
et al. 2014). With ranges shifting due to natural
and anthropogenic causes, there are multiple
ways selection can occur. Many studies have
shown the evolution of increased growth rate of
invaders in invaded habitats (Matlaga et al. 2012,
Liao et al. 2013). Increased growth rates at range
edges have also been found due to natural range

expansion and poleward migration of species
(Evans et al. 2013, Kilkenny and Galloway 2013,
Schwarzer et al. 2013). Trait evolution on the
leading edge of a continuously moving coloniza-
tion front may maintain a viable colonizing phe-
notype. The maintenance of distinct ecotypes on
a landscape arisen through local adaptation
within a species can be attributed to strong
edaphic and environmental gradients, and sym-
patric isolations such as flowering time. For
example, dwarf ecotypes of Eucalyptus globulus
have evolved independently multiple times on
rocky cliff outcrops (Foster et al. 2007), but these
populations remain much more genetically iso-
lated by distance and phenology, than the rocky
colonists M. polymorpha studied here.

Ecosystem consequences of trait evolution during
colonization
Variation in aboveground plant traits, caused

by underlying genetic variation, has been shown
to change community and ecosystem processes.

Table 2. Variation in tree height and substrate influence mortality in the common garden and soil properties in
the field.

Response Height Substrate Height 9 Substrate

Soil chemical data
Soil total nitrogen 25.14 (<0.0001) 1.1902 (0.28) 0.3473 (0.55)
Soil total carbon 0.9459 (0.33) 1.6304 (0.20) 0.1137 (0.74)
Soil pH 2.3870 (0.16) 2.5363 (0.11) 5.1746 (0.03)

Soil enzyme activities
Phosphatase 6.3877 (0.01) 1.3947 (0.24) 0.0769 (0.78)
b-glucosidase 0.5874 (0.44) 2.3661 (0.13) 0.0229 (0.88)
a-glucosidase 1.0004 (0.32) 0.0503 (0.82) 0.0116 (0.91)
NAG 1.6434 (0.20) 0.0172 (0.90) 0.1146 (0.74)
Phenol oxidase 3.1962 (0.08) 1.5699 (0.21) 0.3323 (0.57)

Soil CO2 incubation
30 d decomposition 4.3479 (0.04) 0.5959 (0.44) 0.1534 (0.70)

Notes: Analysis of covariance for field soil response variables to tree height (Height) and the soil age (Substrate). F ratios for
each parameter are listed followed by the P value in parentheses. Bolded F ratios represent significant (a = 0.05) effects and
italicized F ratios represent P < 0.1.

(Fig. 2. Continued)
higher concentrations of (a) carbon (C), (b) nitrogen (N), and (c) were more acidic. Soils in the younger substrate
had (d) higher phosphatase activities and (e) higher C decomposition. Increases in tree height and shoot length
significantly increase (f) soil N found beneath these trees, but not (g) carbon. Soil pH (h, black solid line) signifi-
cantly increases with height in the matrix, without (h, gray dashed line) changing in the k�ıpuka. Increases in the
(i) extracellular enzyme activity of phosphatase were found in soils of shorter trees, and soils under shorter trees
also have increased (j) C decomposition (i.e., reduced soil C storage), when measured during a 30-d laboratory
incubation.
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Genetic variation within a species can influence
associated arthropods (Keith et al. 2010) and soil
microbial communities (Schweitzer et al. 2008,
Bardgett and Wardle 2010) leading to changes in
ecosystem function (Hobbie et al. 2006). Further-
more, whether under direct control from plants
or indirectly through associated communities,
genotypic variation in plant traits has been
shown to influence soil respiration (Lojewski
et al. 2012) and total soil C and N (Pregitzer et al.
2013) and annual rates of N mineralization (Sch-
weitzer et al. 2012). At broader scales, it has been
demonstrated that plant traits influence decom-
position rates globally, often being just as impor-
tant as climate (Cornwell 2008). It is clear that
shifts in plant functional traits due to evolution
in a novel range can alter ecosystem processes,
potentially feeding back on global C and N
cycles.

The data reported here suggest that divergence
of plant traits, in addition to variation in environ-
mental factors that can alter microbial communi-
ties, in matrix trees is significantly changing soil
processes in these unique and nutrient-poor areas.
Variation in soil chemistry such as pH and total
N, which are correlated with tree height, as well
as differences in light and temperature can alter
the microbial communities present and the soil
processes they mediate. These different soil com-
munities are acquiring phosphorus at different
rates and utilize soil C substrates to different effi-
ciencies. Matrix soils utilized more recalcitrant C
substrates effectively and leading to more C stor-
age in k�ıpuka beyond the effect of longer storage
times. The faster turnover of recalcitrant soil C in
the matrix could be due to lower litter quality and
the need for specialist microorganisms (Keeler
et al. 2009). If this is the case, nutrient limitation
in colonizing phenotypes and their associated
microbial communities may be decreasing long-
term C storage within the ecosystem. It is critical
to realize that these patterns cannot be separated
from the underlying differences in substrate
age. However, the soils sampled in this study
are very young and comprised primarily of
organic inputs. For this reason, we assume that a
substantial proportion of the among-site varia-
tion in soil chemistry is due to unique plant
traits. With potential decreases in tropical C stor-
age in coarse woody debris (Iwashita et al. 2013),
increased litter decomposition rates (Bothwell

et al. 2014), and belowground process rates
(Giardina et al. 2014) as climates warm, under-
standing how tree genotypes influence C process
rates in tropical fragmented systems will be
important to understanding belowground feed-
backs to global climate.

CONCLUSIONS

Colonization into novel environments occurs
constantly in both natural and anthropogenically
driven contexts, with colonizing species evolving
due to biotic and abiotic filters encountered in
the new habitats. Our results from the field, the
greenhouse, and common garden measurements
show that divergence in growth occurs, despite
strong gene flow, and divergence can lead to
variation in growth and other functional traits.
Moreover, these data show that phenotypic dif-
ferences, in combination with environmental dif-
ferences across the sites, may alter soil properties
and ecosystem processes. These data support
previous work showing that plant colonization
may lead to niche construction, creating distinct
soil conditions that influence soil C and nutrient
dynamics. Foundation species can rapidly evolve
and the ecosystem consequences of these coloniz-
ing phenotypes are critical to understanding the
full effects of plant species migration under both
natural and anthropogenic circumstances.
The Hawai`ian Islands provide globally unique

model study systems for testing ecological theory
(Vitousek 2004), and understanding evolutionary
change, including species divergence (Freed et al.
1987), rapid evolution (Carson and Johnson 1975),
and phenotypic plasticity (Cordell et al. 1998).
Re-colonization of lava by M. polymorpha post-
eruption provides another model study system
for understanding the long-term evolutionary
consequences of colonization, especially as this
tree species is both an early colonizer and a long-
lived canopy dominant. This implies that the
strong abiotic changes that are encountered dur-
ing colonization can act as a selective agent. This
study supports the idea that evolutionary pro-
cesses in land plants can be rapid along soil gradi-
ents (Chapin et al. 1993, Treseder and Vitousek
2001, Brady et al. 2005, Buswell et al. 2011). The
drastic change in the potential fitness between the
k�ıpuka and lava matrix has likely led to traits
being selected for during colonization of the lava

 ❖ www.esajournals.org 12 May 2017 ❖ Volume 8(5) ❖ Article e01743

MUELLER ET AL.



matrix. Colonization is a subset of species move-
ment, similar to invasion, in both how plants
evolve in novel locations, and how evolved phe-
notypes alter ecosystems. Drawing on both of
these ideas in a broad framework of species
movement is necessary for understanding ecosys-
tem consequences in a changing world.
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