87 research outputs found

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers

    Get PDF
    Recently, genome-wide association studies have identified loci across a segment of chromosome 8q24 (128,100,000–128,700,000) associated with the risk of breast, colon and prostate cancers. At least three regions of 8q24 have been independently associated with prostate cancer risk; the most centromeric of which appears to be population specific. Haplotypes in two contiguous but independent loci, marked by rs6983267 and rs1447295, have been identified in the Cancer Genetic Markers of Susceptibility project (http://cgems.cancer.gov), which genotyped more than 5,000 prostate cancer cases and 5,000 controls of European origin. The rs6983267 locus is also strongly associated with colorectal cancer. To ascertain a comprehensive catalog of common single-nucleotide polymorphisms (SNPs) across the two regions, we conducted a resequence analysis of 136 kb (chr8: 128,473,000–128,609,802) using the Roche/454 next-generation sequencing technology in 39 prostate cancer cases and 40 controls of European origin. We have characterized a comprehensive catalog of common (MAF > 1%) SNPs within this region, including 442 novel SNPs and have determined the pattern of linkage disequilibrium across the region. Our study has generated a detailed map of genetic variation across the region, which should be useful for choosing SNPs for fine mapping of association signals in 8q24 and investigations of the functional consequences of select common variants

    Comprehensive resequence analysis of a 97 kb region of chromosome 10q11.2 containing the MSMB gene associated with prostate cancer

    Get PDF
    Genome-wide association studies of prostate cancer have identified single nucleotide polymorphism (SNP) markers in a region of chromosome 10q11.2, harboring the microseminoprotein-β (MSMB) gene. Both the gene product of MSMB, the prostate secretory protein 94 (PSP94) and its binding protein (PSPBP), have been previously investigated as serum biomarkers for prostate cancer progression. Recent functional work has shown that different alleles of the significantly associated SNP in the promoter of MSMB found to be associated with prostate cancer risk, rs10993994, can influence its expression in tumors and in vitro studies. Since it is plausible that additional variants in this region contribute to the risk of prostate cancer, we have used next-generation sequencing technology to resequence a ~97-kb region that includes the area surrounding MSMB (chr10: 51,168,025–51,265,101) in 36 prostate cancer cases, 26 controls of European origin, and 8 unrelated CEPH individuals in order to identify additional variants to investigate in functional studies. We identified 241 novel polymorphisms within this region, including 142 in the 51-kb block of linkage disequilibrium (LD) that contains rs10993994 and the proximal promoter of MSMB. No sites were observed to be polymorphic within the exons of MSMB

    A roadmap of strain in doped anatase TiO2

    Get PDF
    Anatase titanium oxide is important for its high chemical stability and photocatalytic properties, however, the latter are plagued by its large band gap that limits its activity to only a small percentage of the solar spectrum. In that respect, straining the material can reduce its band gap increasing the photocatalytic activity of titanium oxide. We apply density functional theory with the introduction of the Hubbard + U model, to investigate the impact of stress on the electronic structure of anatase in conjunction with defect engineering by intrinsic defects (oxygen/titanium vacancies and interstitials), metallic dopants (iron, chromium) and non-metallic dopants (carbon, nitrogen). Here we show that both biaxial and uniaxial strain can reduce the band gap of undoped anatase with the use of biaxial strain being marginally more beneficial reducing the band gap up to 2.96 eV at a tensile stress of 8 GPa. Biaxial tensile stress in parallel with doping results in reduction of the band gap but also in the introduction of states deep inside the band gap mainly for interstitially doped anatase. Dopants in substitutional positions show reduced deep level traps. Chromium-doped anatase at a tensile stress of 8 GPa shows the most significant reduction of the band gap as the band gap reaches 2.4 eV

    A comprehensive resequence analysis of the KLK15–KLK3–KLK2 locus on chromosome 19q13.33

    Get PDF
    Single nucleotide polymorphisms (SNPs) in the KLK3 gene on chromosome 19q13.33 are associated with serum prostate-specific antigen (PSA) levels. Recent genome wide association studies of prostate cancer have yielded conflicting results for association of the same SNPs with prostate cancer risk. Since the KLK3 gene encodes the PSA protein that forms the basis for a widely used screening test for prostate cancer, it is critical to fully characterize genetic variation in this region and assess its relationship with the risk of prostate cancer. We have conducted a next-generation sequence analysis in 78 individuals of European ancestry to characterize common (minor allele frequency, MAF >1%) genetic variation in a 56 kb region on chromosome 19q13.33 centered on the KLK3 gene (chr19:56,019,829–56,076,043 bps). We identified 555 polymorphic loci in the process including 116 novel SNPs and 182 novel insertion/deletion polymorphisms (indels). Based on tagging analysis, 144 loci are necessary to tag the region at an r2 threshold of 0.8 and MAF of 1% or higher, while 86 loci are required to tag the region at an r2 threshold of 0.8 and MAF >5%. Our sequence data augments coverage by 35 and 78% as compared to variants in dbSNP and HapMap, respectively. We observed six non-synonymous amino acid or frame shift changes in the KLK3 gene and three changes in each of the neighboring genes, KLK15 and KLK2. Our study has generated a detailed map of common genetic variation in the genomic region surrounding the KLK3 gene, which should be useful for fine-mapping the association signal as well as determining the contribution of this locus to prostate cancer risk and/or regulation of PSA expression

    Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels

    Get PDF
    Measurements of serum prostate-specific antigen (PSA) protein levels form the basis for a widely used test to screen men for prostate cancer. Germline variants in the gene that encodes the PSA protein (KLK3) have been shown to be associated with both serum PSA levels and prostate cancer. Based on a resequencing analysis of a 56 kb region on chromosome 19q13.33, centered on the KLK3 gene, we fine mapped this locus by genotyping tag SNPs in 3,522 prostate cancer cases and 3,338 controls from five case–control studies. We did not observe a strong association with the KLK3 variant, reported in previous studies to confer risk for prostate cancer (rs2735839; P = 0.20) but did observe three highly correlated SNPs (rs17632542, rs62113212 and rs62113214) associated with prostate cancer [P = 3.41 × 10−4, per-allele trend odds ratio (OR) = 0.77, 95% CI = 0.67–0.89]. The signal was apparent only for nonaggressive prostate cancer cases with Gleason score <7 and disease stage <III (P = 4.72 × 10−5, per-allele trend OR = 0.68, 95% CI = 0.57–0.82) and not for advanced cases with Gleason score >8 or stage ≥III (P = 0.31, per-allele trend OR = 1.12, 95% CI = 0.90–1.40). One of the three highly correlated SNPs, rs17632542, introduces a non-synonymous amino acid change in the KLK3 protein with a predicted benign or neutral functional impact. Baseline PSA levels were 43.7% higher in control subjects with no minor alleles (1.61 ng/ml, 95% CI = 1.49–1.72) than in those with one or more minor alleles at any one of the three SNPs (1.12 ng/ml, 95% CI = 0.96–1.28) (P = 9.70 × 10−5). Together our results suggest that germline KLK3 variants could influence the diagnosis of nonaggressive prostate cancer by influencing the likelihood of biopsy

    Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition

    Get PDF
    INTRODUCTION Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS). METHODS CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. RESULTS Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. CONCLUSIONS Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF

    The desmosome and pemphigus

    Get PDF
    Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    corecore