363 research outputs found

    Drug-associated changes in amino acid residues in Gag p2, p7NC, and p6Gag/p6Pol in human immunodeficiency virus type 1 (HIV-1) display a dominant effect on replicative fitness and drug response

    Get PDF
    AbstractRegions of HIV-1 gag between p2 and p6Gag/p6Pol, in addition to protease (PR), develop genetic diversity in HIV-1 infected individuals who fail to suppress virus replication by combination protease inhibitor (PI) therapy. To elucidate functional consequences for viral replication and PI susceptibility by changes in Gag that evolve in vivo during PI therapy, a panel of recombinant viruses was constructed. Residues in Gag p2/p7NC cleavage site and p7NC, combined with residues in the flap of PR, defined novel fitness determinants that restored replicative capacity to the posttherapy virus. Multiple determinants in Gag have a dominant effect on PR phenotype and increase susceptibility to inhibitors of drug-resistant or drug-sensitive PR genes. Gag determinants of drug sensitivity and replication alter the fitness landscape of the virus, and viral replicative capacity can be independent of drug sensitivity. The functional linkage between Gag and PR provides targets for novel therapeutics to inhibit drug-resistant viruses

    Predictive response-relevant clustering of expression data provides insights into disease processes

    Get PDF
    This article describes and illustrates a novel method of microarray data analysis that couples model-based clustering and binary classification to form clusters of ;response-relevant' genes; that is, genes that are informative when discriminating between the different values of the response. Predictions are subsequently made using an appropriate statistical summary of each gene cluster, which we call the ;meta-covariate' representation of the cluster, in a probit regression model. We first illustrate this method by analysing a leukaemia expression dataset, before focusing closely on the meta-covariate analysis of a renal gene expression dataset in a rat model of salt-sensitive hypertension. We explore the biological insights provided by our analysis of these data. In particular, we identify a highly influential cluster of 13 genes-including three transcription factors (Arntl, Bhlhe41 and Npas2)-that is implicated as being protective against hypertension in response to increased dietary sodium. Functional and canonical pathway analysis of this cluster using Ingenuity Pathway Analysis implicated transcriptional activation and circadian rhythm signalling, respectively. Although we illustrate our method using only expression data, the method is applicable to any high-dimensional datasets

    The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the Mammalian Colon

    Get PDF
    The microbiome is being characterized by large-scale sequencing efforts, yet it is not known whether it regulates host metabolism in a general versus tissue-specific manner or which bacterial metabolites are important. Here, we demonstrate that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues. This tissue specificity is due to colonocytes utilizing bacterially-produced butyrate as their primary energy source. Colonocytes from germfree mice are in an energy-deprived state and exhibit decreased expression of enzymes that catalyze key steps in intermediary metabolism including the TCA cycle. Consequently, there is a marked decrease in NADH/NAD+, oxidative phosphorylation, and ATP levels, which results in AMPK activation, p27kip1 phosphorylation, and autophagy. When butyrate is added to germfree colonocytes, it rescues their deficit in mitochondrial respiration and prevents them from undergoing autophagy. The mechanism is due to butyrate acting as an energy source rather than as an HDAC inhibitor

    Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-

    Get PDF
    In a sample of 471 million BB events collected with the BABAR detector at the PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is either e+e- or mu+mu-. We report results on partial branching fractions and isospin asymmetries in seven bins of di-lepton mass-squared. We further present CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi resonance. We find no evidence for CP or lepton-flavor violation. The partial branching fractions and isospin asymmetries are consistent with the Standard Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.

    Observation of time-reversal violation in the B0 meson system

    Get PDF
    The individually named authors work collectively as The BABAR Collaboration. Copyright @ 2012 American Physical Society.Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B0 or B¯¯¯0), and J/ψK0L or cc¯K0S final states (referred to as B+ or B−), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, B¯¯¯0→B− and B−→B¯¯¯0, as a function of the time difference between the two B decays. Using 468×106 BB¯¯¯ pairs produced in Υ(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding ΔS+T=−1.37±0.14(stat)±0.06(syst) and ΔS−T=1.17±0.18(stat)±0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG(Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel)

    Characteristics of Patients Who Survived < 3 Months or > 2 Years After Surgery for Spinal Metastases: Can We Avoid Inappropriate Patient Selection?

    Get PDF
    PURPOSE: Survival after metastatic cancer has improved at the cost of increased presentation with metastatic spinal disease. For patients with pathologic spinal fractures and/or spinal cord compression, surgical intervention may relieve pain and improve quality of life. Surgery is generally considered to be inappropriate if anticipated survival is < 3 months. The aim of this international multicenter study was to analyze data from patients who died within 3 months or 2 years after surgery, to identify preoperative factors associated with poor or good survival, and to avoid inappropriate selection of patients for surgery in the future. PATIENTS AND METHODS: A total of 1,266 patients underwent surgery for impending pathologic fractures and/or neurologic deficits and were prospectively observed. Data collected included tumor characteristics, preoperative fitness (American Society of Anesthesiologists advisory [ASA]), neurologic status (Frankel scale), performance (Karnofsky performance score [KPS]), and quality of life (EuroQol five-dimensions questionnaire [EQ-5D]). Outcomes were survival at 3 months and 2 years postsurgery. Univariable and multivariable logistic regression analyses were used to find preoperative factors associated with short-term and long-term survival. RESULTS: In univariable analysis, age, emergency surgery, KPS, EQ-5D, ASA, Frankel, and Tokuhashi/Tomita scores were significantly associated with short survival. In multivariable analysis, KPS and age were significantly associated with short survival (odds ratio [OR], 1.36; 95% CI, 1.15 to 1.62; and OR, 1.14; 95% CI, 1.02 to 1.27, respectively). Associated with longer survival in univariable analysis were age, number of levels included in surgery, KPS, EQ-5D, Frankel, and Tokuhashi/Tomita scores. In multivariable analysis, the number of levels included in surgery (OR, 1.21; 95% CI, 1.06 to 1.38) and primary tumor type were significantly associated with longer survival. CONCLUSION: Poor performance status at presentation is the strongest indicator of poor short-term survival, whereas low disease load and favorable tumor histology are associated with longer-term survival

    Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar

    Get PDF
    We study the process e+eJ/ψπ+πe^+e^-\to J/\psi\pi^{+}\pi^{-} with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BaBar detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb1\mathrm{fb^{-1}}. We investigate the J/ψπ+πJ/\psi \pi^{+}\pi^{-} mass distribution in the region from 3.5 to 5.5 GeV/c2\mathrm{GeV/c^{2}}. Below 3.7 GeV/c2\mathrm{GeV/c^{2}} the ψ(2S)\psi(2S) signal dominates, and above 4 GeV/c2\mathrm{GeV/c^{2}} there is a significant peak due to the Y(4260). A fit to the data in the range 3.74 -- 5.50 GeV/c2\mathrm{GeV/c^{2}} yields a mass value 4244±54244 \pm 5 (stat) ±4 \pm 4 (syst)MeV/c2\mathrm{MeV/c^{2}} and a width value 11415+16114 ^{+16}_{-15} (stat)±7 \pm 7(syst)MeV\mathrm{MeV} for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c2\mathrm{GeV/c^{2}}. In addition, we investigate the π+π\pi^{+}\pi^{-} system which results from Y(4260) decay

    A search for the decay modes B+/- to h+/- tau l

    Get PDF
    We present a search for the lepton flavor violating decay modes B+/- to h+/- tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472 million BBbar pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the tau four-momentum. The resulting tau candidate mass is our main discriminant against combinatorial background. We see no evidence for B+/- to h+/- tau l decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.

    Regulation of BMAL1 Protein Stability and Circadian Function by GSK3β-Mediated Phosphorylation

    Get PDF
    Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3beta signaling pathway regulates BMAL1 protein stability and activity.GSK3beta phosphorylates BMAL1 specifically on Ser 17 and Thr 21 and primes it for ubiquitylation. In the absence of GSK3beta-mediated phosphorylation, BMAL1 becomes stabilized and BMAL1 dependent circadian gene expression is dampened. Dopamine D2 receptor mediated signaling, known to control the Akt-GSK3beta pathway, influences BMAL1 stability and in vivo circadian gene expression in striatal neurons.These findings uncover a previously unknown mechanism of circadian clock control. The GSK3beta kinase phosphorylates BMAL1, an event that controls the stability of the protein and the amplitude of circadian oscillation. BMAL1 phosphorylation appears to be an important regulatory step in maintaining the robustness of the circadian clock
    corecore