159 research outputs found

    Differences in biological traits composition of benthic assemblages between unimpacted habitats

    Get PDF
    There is an implicit requirement under contemporary policy drivers to understand the characteristics of benthic communities under anthropogenically-unimpacted scenarios. We used a trait-based approach on a large dataset from across the European shelf to determine how functional characteristics of unimpacted benthic assemblages vary between different sedimentary habitats. Assemblages in deep, muddy environments unaffected by anthropogenic disturbance show increased proportions of downward conveyors and surface deposit-feeders, while burrowing, diffusive mixing, scavenging and predation traits assume greater numerical proportions in shallower habitats. Deep, coarser sediments are numerically more dominated by sessile, upward conveyors and suspension feeders. In contrast, unimpacted assemblages of coarse sediments in shallower regions are proportionally dominated by the diffusive mixers, burrowers, scavengers and predators. Finally, assemblages of gravelly sediments exhibit a relatively greater numerical dominance of non-bioturbators and asexual reproducers. These findings may be used to form the basis of ranking habitats along a functional sensitivity gradient

    The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway

    Get PDF
    This study demonstrates how cold-water coral morphology and habitat distribution are shaped by local hydrodynamics, using high-definition video from Tisler Reef, an inshore reef in Norway. A total of 334 video frames collected on the north-west (NW) and south-east (SE) side of the reef were investigated for Lophelia pertusa coral cover and morphology and for the cover of the associated sponges Mycale lingua and Geodia sp. Our results showed that the SE side was a better habitat for L. pertusa (including live and dead colonies). Low cover of Geodia sp. was found on both sides of Tisler Reef. In contrast, Mycale lingua had higher percentage cover, especially on the NW side of the reef. Bush-shaped colonies of L. pertusa with elongated branches were the most abundant coral morphology on Tisler Reef. The highest abundance and density of this morphology were found on the SE side of the reef, while a higher proportion of cauliflower-shaped corals with short branches were found on the NW side. The proportion of very small L. pertusa colonies was also significantly higher on the SE side of the reef. The patterns in coral spatial distribution and morphology were related to local hydrodynamics—there were more frequent periods of downwelling currents on the SE side—and to the availability of suitable settling substrates. These factors make the SE region of Tisler Reef more suitable for coral growth. Understanding the impact of local hydrodynamics on the spatial extent and morphology of coral, and their relation to associated organisms such as sponges, is key to understanding the past and future development of the reefVersión del editor3,87

    Deliverable 1.1 review document on the management of marine areas with particular regard on concepts, objectives, frameworks and tools to implement, monitor, and evaluate spatially managed areas

    Get PDF
    The main objectives if this document were to review the existing information on spatial management of marine areas, identifying the relevant policy objectives, to identify parameters linked to the success or failure of the various Spatially Managed marine Areas (SMAs) regimes, to report on methods and tools used in monitoring and evaluation of the state of SMAs, and to identify gaps and weaknesses in the existing frameworks in relation to the implementation, monitoring, evaluation and management of SMAs. The document is naturally divided in two sections: Section 1 reviews the concepts, objectives, drivers, policy and management framework, and extraneous factors related to the design, implementation and evaluation of SMAs; Section 2 reviews the tools and methods to monitor and evaluate seabed habitats and marine populations.peer-reviewe

    Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems

    Get PDF
    Background: In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. Methodology/Principal Findings: We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43uN, 63–71uW, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. Conclusions/Significance: The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life-history characteristics of target species, and the lack of trained taxonomists

    A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses

    Get PDF
    Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem

    Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems

    Get PDF
    Background: Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning. Methodology/Principal Findings: Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but wea

    Cirripedia of Madeira

    Get PDF
    We give a list of Cirripedia from Madeira Island and nearby deep water, based on specimens in the collection of the Museu Municipal do Funchal (Historia Natural) (MMF), records mentioned in the literature, and recent collections. Tesseropora atlantica Newman and Ross, 1976 is recorded from Madeira for the first time. The Megabalanus of Madeira is M. azoricus. There are 20 genera containing 27 species, of which 22 occur in depths less than 200 m. Of these shallow water species, eight are wide-ranging oceanic forms that attach to other organisms or to floating objects, leaving just 13 truly benthic shallow water barnacles. This low diversity is probably a consequence of the distance from the continental coasts and the small area of the available habitat. No endemic species have been found
    • …
    corecore