54 research outputs found

    Traceability of Long-Term Atmospheric Composition Observations across Global Monitoring Networks: Chemical Metrology Applied to the Measurements of Constituents in Air, Water, and Soil

    Get PDF
    High-quality and long-term comparable time series of the relevant atmospheric observations are the essential prerequisite to understand the dynamical, physical and chemical state of the atmosphere from seasonal to multi-decadal time scales. For relevant gaseous compounds such as ozone, methane (CH4) and carbon monoxide (CO), the requirements are secured by tracing back these observations to common primary standards. Periodical audits of the system in operation and the performance of measurement sites provide additional information about data quality and comparability. The results of 48 audits conducted by the World Calibration Centre for Surface Ozone, Carbon Monoxide and Methane (WCC-Empa) at global stations of the Global Atmosphere Watch programme (GAW) from 1996 to 2009 show that most of the audited sites meet the data quality objectives for ozone and methane whereas the situation is less uniform for carbon monoxide

    Three-dimensional radiative transfer effects on airborne and ground-based trace gas remote sensing

    Get PDF
    Air mass factors (AMFs) are used in passive trace gas remote sensing for converting slant column densities (SCDs) to vertical column densities (VCDs). AMFs are traditionally computed with 1D radiative transfer models assuming horizontally homogeneous conditions. However, when observations are made with high spatial resolution in a heterogeneous atmosphere or above a heterogeneous surface, 3D effects may not be negligible. To study the importance of 3D effects on AMFs for different types of trace gas remote sensing, we implemented 1D-layer and 3D-box AMFs into the Monte carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres (MYSTIC), a solver of the libRadtran radiative transfer model (RTM). The 3D-box AMF implementation is fully consistent with 1D-layer AMFs under horizontally homogeneous conditions and agrees very well ( < 5 % relative error) with 1D-layer AMFs computed by other RTMs for a wide range of scenarios. The 3D-box AMFs make it possible to visualize the 3D spatial distribution of the sensitivity of a trace gas observation, which we demonstrate with two examples. First, we computed 3D-box AMFs for ground-based multi-axis spectrometer (MAX-DOAS) observations for different viewing geometry and aerosol scenarios. The results illustrate how the sensitivity reduces with distance from the instrument and that a non-negligible part of the signal originates from outside the line of sight. Such information is invaluable for interpreting MAX-DOAS observations in heterogeneous environments such as urban areas. Second, 3D-box AMFs were used to generate synthetic nitrogen dioxide (NO2) SCDs for an air-borne imaging spectrometer observing the NO2 plume emitted from a tall stack. The plume was imaged under different solar zenith angles and solar azimuth angles. To demonstrate the limitations of classical 1D-layer AMFs, VCDs were then computed assuming horizontal homogeneity. As a result, the imaged NO2 plume was shifted in space, which led to a strong underestimation of the total VCDs in the plume maximum and an underestimation of the integrated line densities that can be used for estimating emissions from NO2 images. The two examples demonstrate the importance of 3D effects for several types of ground-based and airborne remote sensing when the atmosphere cannot be assumed to be horizontally homogeneous, which is typically the case in the vicinity of emission sources or in cities

    Recent advances in measurement techniques for atmospheric carbon monoxide and nitrous oxide observations

    Get PDF
    International audienceCarbon monoxide (CO) and nitrous oxide (N 2 O) are two key parameters in the observation of the atmosphere, relevant to air quality and climate change, respectively. For CO, various analytical techniques have been in use over the last few decades. In contrast, N 2 O was mainly measured using gas chromatography (GC) with an electron capture detector (ECD). In recent years, new spectroscopic methods have become available which are suitable for both CO and N 2 O. These include infrared (IR) spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared spectroscopy (FTIR). Corresponding instruments became recently commercially available and are increasingly used at atmospheric monitoring stations. We analysed results obtained through performance audits conducted within the framework of the Global Atmosphere Watch (GAW) quality management system of the World Meteorology Organization (WMO). These results reveal that current spectroscopic measurement techniques have clear advantages with respect to data quality objectives compared to more traditional methods for measuring CO and N 2 O. Further , they allow for a smooth continuation of historic CO and N 2 O time series. However, special care is required concerning potential water vapour interference on the CO amount fraction reported by near-IR CRDS instruments. This is reflected in the results of parallel measurement campaigns, which clearly indicate that drying the sample air leads to an improved accuracy of CO measurements with such near-IR CRDS instruments

    Robust extraction of baseline signal of atmospheric trace species using local regression

    Get PDF
    The identification of atmospheric trace species measurements that are representative of well-mixed background air masses is required for monitoring atmospheric composition change at background sites. We present a statistical method based on robust local regression that is well suited for the selection of background measurements and the estimation of associated baseline curves. The bootstrap technique is applied to calculate the uncertainty in the resulting baseline curve. The non-parametric nature of the proposed approach makes it more flexible than other commonly used statistical data filtering methods. Application to carbon monoxide (CO) measured from 1996 to 2009 at the high-alpine site Jungfraujoch (Switzerland, 3580m asl.), and to measurements of 1,1-difluoroethane (HFC-152a) from Jungfraujoch (2000 to 2009) and Mace Head (Ireland, 1995 to 2009) demonstrates the feasibility and usefulness of the proposed approach. The determined average annual change of CO at Jungfraujoch for the 1996 to 2009 period as estimated from filtered annual mean CO concentrations is -2.2 1.1 ppb/yr. For comparison, the linear trend of unfiltered CO measurements at Jungfraujoch for this time period is -2.9 1.3 ppb/yr

    Surface ozone in the Southern Hemisphere : 20 years of data from a site with a unique setting in El Tololo, Chile

    Get PDF
    The knowledge of surface ozone mole fractions and their global distribution is of utmost importance due to the impact of ozone on human health and ecosystems and the central role of ozone in controlling the oxidation capacity of the troposphere. The availability of long-term ozone records is far better in the Northern than in the Southern Hemisphere, and recent analyses of the seven accessible records in the Southern Hemisphere have shown inconclusive trends. Since late 1995, surface ozone is measured in situ at "El Tololo", a high-altitude (2200ma.s.l.) and pristine station in Chile (30°S, 71°W). The dataset has been recently fully quality controlled and reprocessed. This study presents the observed ozone trends and annual cycles and identifies key processes driving these patterns. From 1995 to 2010, an overall positive trend of ∼ 0.7ppb decade−1 is found. Strongest trends per season are observed in March and April. Highest mole fractions are observed in late spring (October) and show a strong correlation with ozone transported from the stratosphere down into the troposphere, as simulated with a model. Over the 20 years of observations, the springtime ozone maximum has shifted to earlier times in the year, which, again, is strongly correlated with a temporal shift in the occurrence of the maximum of simulated stratospheric ozone transport at the site. We conclude that background ozone at El Tololo is mainly driven by stratospheric intrusions rather than photochemical production from anthropogenic and biogenic precursors. The major footprint of the sampled air masses is located over the Pacific Ocean. Therefore, due to the negligible influence of local processes, the ozone record also allows studying the influence of El Niño and La Niña episodes on background ozone levels in South America. In agreement with previous studies, we find that, during La Niña conditions, ozone mole fractions reach higher levels than during El Niño conditions

    Mapping the spatial distribution of NO2 with in situ and remote sensing instruments during the Munich NO2 imaging campaign

    Full text link
    We present results from the Munich Nitrogen dioxide (NO2) Imaging Campaign (MuNIC), where NO2 near-surface concentrations (NSCs) and vertical column densities (VCDs) were measured with stationary, mobile, and airborne in situ and remote sensing instruments in Munich, Germany. The most intensive day of the campaign was 7 July 2016, when the NO2 VCD field was mapped with the Airborne Prism Experiment (APEX) imaging spectrometer. The spatial distribution of APEX VCDs was rather smooth, with a horizontal gradient between lower values upwind and higher values downwind of the city center. The NO2 map had no pronounced source signatures except for the plumes of two combined heat and power (CHP) plants. The APEX VCDs have a fair correlation with mobile multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations from two vehicles conducted on the same afternoon (r=0.55). In contrast to the VCDs, mobile NSC measurements revealed high spatial and temporal variability along the roads, with the highest values in congested areas and tunnels. The NOx emissions of the two CHP plants were estimated from the APEX observations using a mass-balance approach. The NOx emission estimates are consistent with CO2 emissions determined from two ground-based Fourier transform infrared (FTIR) instruments operated near one CHP plant. The estimates are higher than the reported emissions but are probably overestimated because the uncertainties are large, as conditions were unstable and convective with low and highly variable wind speeds. Under such conditions, the application of mass-balance approaches is problematic because they assume steady-state conditions. We conclude that airborne imaging spectrometers are well suited for mapping the spatial distribution of NO2 VCDs over large areas. The emission plumes of point sources can be detected in the APEX observations, but accurate flow fields are essential for estimating emissions with sufficient accuracy. The application of airborne imaging spectrometers for studying NSCs is less straightforward and requires us to account for the non-trivial relationship between VCDs and NSCs

    The Global Atmosphere Watch reactive gases measurement network

    Get PDF
    Long-term observations of reactive gases in the troposphere are important for understanding trace gas cycles and the oxidation capacity of the atmosphere, assessing impacts of emission changes, verifying numerical model simulations, and quantifying the interactions between short-lived compounds and climate change. The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) program coordinates a global network of surface stations some of which have measured reactive gases for more than 40 years. Gas species included under this umbrella are ozone, carbon monoxide, nitrogen oxides, and volatile organic compounds (VOCs). There are many challenges involved in setting-up and maintaining such a network over many decades and to ensure that data are of high quality, regularly updated and made easily accessible to users. This overview describes the GAW surface station network of reactive gases, its unique quality management framework, and discusses the data that are available from the central archive. Highlights of data use from the published literature are reviewed, and a brief outlook into the future of GAW is given. This manuscript constitutes the overview of a special feature on GAW reactive gases observations with individual papers reporting on research and data analysis of particular substances being covered by the program. - See more at: http://elementascience.org/article/info:doi/10.12952/journal.elementa.000067#sthash.cHvHu0T6.dpu

    Assessing the response of forest productivity to climate extremes in Switzerland using model-data fusion

    Get PDF
    The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long-term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960-2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 +/- 0.006 Mg C ha(-1) year(-1) km(-1) for P. abies and 0.93 +/- 0.010 Mg C ha(-1) year(-1) km(-1) for F. sylvatica). During warm-dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm-dry extremes. Importantly, cold-dry extremes had negative impacts on regional forest NPP comparable to warm-dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.Peer reviewe

    Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations

    Get PDF
    Until recently, atmospheric carbon dioxide (CO2) and methane (CH4) measurements were made almost exclusively using nondispersive infrared (NDIR) absorption and gas chromatography with flame ionisation detection (GC/FID) techniques, respectively. Recently, commercially available instruments based on spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared (FTIR) spectroscopy have become more widely available and affordable. This resulted in a widespread use of these techniques at many measurement stations. This paper is focused on the comparison between a CRDS "travelling instrument" that has been used during performance audits within the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO) with instruments incorporating other, more traditional techniques for measuring CO2 and CH4 (NDIR and GC/FID). We demonstrate that CRDS instruments and likely other spectroscopic techniques are suitable for WMO/GAW stations and allow a smooth continuation of historic CO2 and CH4 time series. Moreover, the analysis of the audit results indicates that the spectroscopic techniques have a number of advantages over the traditional methods which will lead to the improved accuracy of atmospheric CO2 and CH4 measurements.Peer reviewe

    Reversal of Long-Term Trends in Ethane Identified from the Global Atmosphere Watch Reactive Gases Measurement Network

    Full text link
    Reactive gases play an important role in climate and air pollution issues. They control the self-cleansing capability of the troposphere, contribute to air pollution and acid deposition, regulate the lifetimes and provide tracers for deciphering sources and sinks for greenhouse gases. Within GAW, the focus is placed on long-term, high-quality observations of ozone (O3), carbon monoxide (CO), volatile organic compounds (VOC), nitrogen oxides (NOx), and sulfur dioxide (SO2). More than 100 stations worldwide carry out reactive gases measurements with data reported to two World Data Centers. The reactive gases program in GAW cooperates The WMO GAW Reactive Gases Program with regional networks and other global monitoring initiatives in order to attain a complete picture of the tropospheric chemical composition. Observations are being made by in-situ monitoring, measurements from commercial routine air-crafts (e.g. IAGOS), column observations, and from flask sampling networks. Quality control and coordination of measurements between participating stations are a primary emphasis. GAW reactive gases data in rapid delivery mode are used to evaluate operational atmospheric composition forecasts in the EU Copernicus Atmospheric Monitoring Service. Oversight of the program is provided by GAW-WMO coordinated Reactive Gases Scientific Advisory Committee (RG-SAG)
    corecore