48 research outputs found

    Long-term variations and trends of ionospheric temperatures observed with the EISCAT Tromsoe UHF radar

    Get PDF
    第2回極域科学シンポジウム/第35回極域宙空圏シンポジウム 11月15日(火) 国立極地研究所 2階大会議室前フロ

    Storm Time Global Observations of Largeâ Scale TIDs From Groundâ Based and In Situ Satellite Measurements

    Full text link
    This paper discusses the ionosphere’s response to the largest storm of solar cycle 24 during 16â 18 March 2015. We have used the Global Navigation Satellite Systems (GNSS) total electron content data to study largeâ scale traveling ionospheric disturbances (TIDs) over the American, African, and Asian regions. Equatorward largeâ scale TIDs propagated and crossed the equator to the other side of the hemisphere especially over the American and Asian sectors. Poleward TIDs with velocities in the range â 400â 700 m/s have been observed during local daytime over the American and African sectors with origin from around the geomagnetic equator. Our investigation over the American sector shows that poleward TIDs may have been launched by increased Lorentz coupling as a result of penetrating electric field during the southward turning of the interplanetary magnetic field, Bz. We have observed increase in SWARM satellite electron density (Ne) at the same time when equatorward largeâ scale TIDs are visible over the Europeanâ African sector. The altitude Ne profiles from ionosonde observations show a possible link that stormâ induced TIDs may have influenced the plasma distribution in the topside ionosphere at SWARM satellite altitude.Key PointsIncreased SWARM in situ electron density toward high latitudes in presence of equatorward largeâ scale TIDsEvidence of equatorward TIDs in influencing altitudinal plasma distribution to the topside ionospherePossibility of poleward TIDs launched from the geomagnetic equatorial region with comparable velocity values in both hemispheresPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142539/1/jgra53978_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142539/2/jgra53978.pd

    Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)—study protocol for a randomized controlled trial

    Get PDF
    Background: Given the global increase in the aging population and age-related diseases, the promotion of healthy aging is one of the most crucial public health issues. This trial aims to contribute to the establishment of effective approaches to promote cognitive and brain health in older individuals with subjective cognitive decline (SCD). Presence of SCD is known to increase the risk of objective cognitive decline and progression to dementia due to Alzheimer’s disease. Therefore, it is our primary goal to determine whether spermidine supplementation has a positive impact on memory performance in this at-risk group, as compared with placebo. The secondary goal is to examine the effects of spermidine intake on other neuropsychological, behavioral, and physiological parameters. Methods: The SmartAge trial is a monocentric, randomized, double-blind, placebo-controlled phase IIb trial. The study will investigate 12 months of intervention with spermidine-based nutritional supplementation (target intervention) compared with 12months of placebo intake (control intervention). We plan to recruit 100 cognitively normal older individuals with SCD from memory clinics, neurologists and general practitioners in private practice, and the general population. Participants will be allocated to one of the two study arms using blockwise randomization stratified by age and sex with a 1:1 allocation ratio. The primary outcome is the change in memory performance between baseline and post-intervention visits (12 months after baseline). Secondary outcomes include the change in memory performance from baseline to follow-up assessment (18months after baseline), as well as changes in neurocognitive, behavioral, and physiological parameters (including blood and neuroimaging biomarkers), assessed at baseline and post-intervention. Discussion: The SmartAge trial aims to provide evidence of the impact of spermidine supplementation on memory performance in older individuals with SCD. In addition, we will identify possible neurophysiological mechanisms of action underlying the anticipated cognitive benefits. Overall, this trial will contribute to the establishment of nutrition intervention in the prevention of Alzheimer’s disease

    The science case for the EISCAT_3D radar

    Get PDF
    The EISCAT (European Incoherent SCATer) Scientific Association has provided versatile incoherent scatter (IS) radar facilities on the mainland of northern Scandinavia (the EISCAT UHF and VHF radar systems) and on Svalbard (the electronically scanning radar ESR (EISCAT Svalbard Radar) for studies of the high-latitude ionised upper atmosphere (the ionosphere). The mainland radars were constructed about 30 years ago, based on technological solutions of that time. The science drivers of today, however, require a more flexible instrument, which allows measurements to be made from the troposphere to the topside ionosphere and gives the measured parameters in three dimensions, not just along a single radar beam. The possibility for continuous operation is also an essential feature. To facilitatefuture science work with a world-leading IS radar facility, planning of a new radar system started first with an EU-funded Design Study (2005–2009) and has continued with a follow-up EU FP7 EISCAT_3D Preparatory Phase project (2010–2014). The radar facility will be realised by using phased arrays, and a key aspect is the use of advanced software and data processing techniques. This type of software radar will act as a pathfinder for other facilities worldwide. The new radar facility will enable the EISCAT_3D science community to address new, significant science questions as well as to serve society, which is increasingly dependent on space-based technology and issues related to space weather. The location of the radar within the auroral oval and at the edge of the stratospheric polar vortex is also ideal for studies of the long-term variability in the atmosphere and global change. This paper is a summary of the EISCAT_3D science case, which was prepared as part of the EU-funded Preparatory Phase project for the new facility. Three science working groups, drawn from the EISCAT user community, participated in preparing this document. In addition to these working group members, who are listed as authors, thanks are due to many others in the EISCAT scientific community for useful contributions, discussions, and support

    Daedalus Ionospheric Profile Continuation (DIPCont): Monte Carlo studies assessing the quality of in situ measurement extrapolation

    Get PDF
    In situ satellite exploration of the lower thermosphere-ionosphere system (LTI) as anticipated in the recent Daedalus mission proposal to ESA will be essential to advance the understanding of the interface between the Earth's atmosphere and its space environment. To address physical processes also below perigee, in situ measurements are to be extrapolated using models of the LTI. Motivated by the need for assessing how cost-critical mission elements such as perigee and apogee distances as well as the number of spacecraft affect the accuracy of scientific inference in the LTI, the Daedalus Ionospheric Profile Continuation (DIPCont) project is concerned with the attainable quality of in situ measurement extrapolation for different mission parameters and configurations. This report introduces the methodological framework of the DIPCont approach. Once an LTI model is chosen, ensembles of model parameters are created by means of Monte Carlo simulations using synthetic measurements based on model predictions and relative uncertainties as specified in the Daedalus Report for Assessment. The parameter ensembles give rise to ensembles of model altitude profiles for LTI variables of interest. Extrapolation quality is quantified by statistics derived from the altitude profile ensembles. The vertical extent of meaningful profile continuation is captured by the concept of extrapolation horizons defined as the boundaries of regions where the deviations remain below a prescribed error threshold. To demonstrate the methodology, the initial version of the DIPCont package presented in this paper contains a simplified LTI model with a small number of parameters. As a major source of variability, the pronounced change in temperature across the LTI is captured by self-consistent non-isothermal neutral-density and electron density profiles, constructed from scale height profiles that increase linearly with altitude. The resulting extrapolation horizons are presented for dual-satellite measurements at different inter-spacecraft distances but also for the single-satellite case to compare the two basic mission scenarios under consideration. DIPCont models and procedures are implemented in a collection of Python modules and Jupyter notebooks supplementing this report

    Accelerated expansion from structure formation

    Get PDF
    We discuss the physics of backreaction-driven accelerated expansion. Using the exact equations for the behaviour of averages in dust universes, we explain how large-scale smoothness does not imply that the effect of inhomogeneity and anisotropy on the expansion rate is small. We demonstrate with an analytical toy model how gravitational collapse can lead to acceleration. We find that the conjecture of the accelerated expansion being due to structure formation is in agreement with the general observational picture of structures in the universe, and more quantitative work is needed to make a detailed comparison.Comment: 44 pages, 1 figure. Expanded treatment of topics from the Gravity Research Foundation contest essay astro-ph/0605632. v2: Added references, clarified wordings. v3: Published version. Minor changes and corrections, added a referenc

    Plasma-neutral interactions in the lower thermosphere-ionosphere : The need for in situ measurements to address focused questions

    Get PDF
    The lower thermosphere-ionosphere (LTI) is a key transition region between Earth's atmosphere and space. Interactions between ions and neutrals maximize within the LTI and in particular at altitudes from 100 to 200 km, which is the least visited region of the near-Earth environment. The lack of in situ co-temporal and co-spatial measurements of all relevant parameters and their elusiveness to most remote-sensing methods means that the complex interactions between its neutral and charged constituents remain poorly characterized to this date. This lack of measurements, together with the ambiguity in the quantification of key processes in the 100-200 km altitude range affect current modeling efforts to expand atmospheric models upward to include the LTI and limit current space weather prediction capabilities. We present focused questions in the LTI that are related to the complex interactions between its neutral and charged constituents. These questions concern core physical processes that govern the energetics, dynamics, and chemistry of the LTI and need to be addressed as fundamental and long-standing questions in this critically unexplored boundary region. We also outline the range of in situ measurements that are needed to unambiguously quantify key LTI processes within this region, and present elements of an in situ concept based on past proposed mission concepts.Peer reviewe
    corecore