61 research outputs found

    Patterns in the diversity and distribution of flowering plant genera

    Get PDF
    Regional distributions of all vascular plant genera have been compiled from herbarium specimens at the Royal Botanic Gardens, Kew, and this data has then been analysed for large-scale patterns in the diversity and distribution of flowering plants, at both genus and family levels. A strong latitudinal gradient in diversity is apparent at family, genus and species levels, though while western South America is most diverse at species and genus levels, it is the SW. Pacific which is most diverse at family level. However, the number of families and genera per region is very strongly correlated, irrespective of the region. There is a very strong relationship between area and both family and genus diversity, though not for numbers of endemic genera. Analysing floristic similarity between different regions of the world reveals very strongly supported continental groups, since most genera are confined to particular continents, although the latitudinal difference between regions is a better predictor of floristic similarity than is simply distance between regions. Latitudinal range-size for genera increases towards the equator, although taxon-size in general decreases with increasing latitudinal range-size. For both families and genera, the range-size frequency distribution is highly skewed towards small range sizes (more so for genera than families), which account for the majority of taxa. Distribution patterns show strong regional clustering, with almost 40% of genera single-region endemics, and approximately 20% of world distribution patterns accounting for about 80% of total angiosperm genus diversity. Analysis of these distribution patterns reveals a strong correlation between diversity and the number of floristic elements, which intersect to form the diversity of a region. In general, though with many exceptions, there is a correlation between recency of evolutionary origin and the size (number of taxa) and spread (size of distribution) of flowering plant families. However, while a phylogenetic perspective becomes essential for addressing within-family patterns of distribution, it is argued that over the whole clade of flowering plants the resulting patterns of diversity are constrained more by large-scale ecological processes

    Setting temporal baselines for biodiversity : the limits of available monitoring data for capturing the full impact of anthropogenic pressures

    Get PDF
    Temporal baselines are needed for biodiversity, in order for the change in biodiversity to be measured over time, the targets for biodiversity conservation to be defined and conservation progress to be evaluated. Limited biodiversity information is widely recognized as a major barrier for identifying temporal baselines, although a comprehensive quantitative assessment of this is lacking. Here, we report on the temporal baselines that could be drawn from biodiversity monitoring schemes in Europe and compare those with the rise of important anthropogenic pressures. Most biodiversity monitoring schemes were initiated late in the 20th century, well after anthropogenic pressures had already reached half of their current magnitude. Setting temporal baselines from biodiversity monitoring data would therefore underestimate the full range of impacts of major anthropogenic pressures. In addition, biases among taxa and organization levels provide a truncated picture of biodiversity over time. These limitations need to be explicitly acknowledged when designing management strategies and policies as they seriously constrain our ability to identify relevant conservation targets aimed at restoring or reversing biodiversity losses. We discuss the need for additional research efforts beyond standard biodiversity monitoring to reconstruct the impacts of major anthropogenic pressures and to identify meaningful temporal baselines for biodiversity

    Dynamic virtual ecosystems as a tool for detecting large-scale responses of biodiversity to environmental and land-use change

    Full text link
    In the face of biodiversity loss, we rely upon measures of diversity to describe the health of ecosystems and to direct policymakers and conservation efforts. However, there are many complexities in natural systems that can easily confound biodiversity measures, giving misleading interpretations of the system status and, as a result, there is yet to be a consistent framework by which to measure this biodiversity loss. Ecosystems are governed by dynamic processes, such as reproduction, dispersal and competition for resources, that both shape their biodiversity and how the system responds to change. Here, we incorporate these processes into simulations of habitat and environmental change, in order to understand how well we can identify signals of biodiversity loss against the background inherent variability these processes introduce. We developed a tool for Ecosystem Simulation through Integrated Species Trait-Environment Modelling (EcoSISTEM), which models on the species-level for several sizes of ecosystem, from small islands and patches through to entire regions, and several different types of habitat. We tested a suite of traditionally-used and new biodiversity measures on simulated ecosystems against a range of different scenarios of population decline, invasion and habitat loss. We found that the response of biodiversity measures was generally stronger in larger, more heterogeneous habitats than in smaller or homogeneous habitats. We were also able to detect signals of increasing homogenisation in climate change scenarios, which contradicted the signal of increased heterogeneity and distinctiveness through habitat loss

    Trait-based prediction of extinction risk across terrestrial taxa

    Get PDF
    Species differ in their biological susceptibility to extinction, but the set of traits determining susceptibility varies across taxa. It is yet unclear which patterns are common to all taxa, and which are taxon-specific, with conse-quences to conservation practice. In this study we analysed the generality of trait-based prediction of extinction risk across terrestrial (including freshwater) vertebrates, invertebrates and plants at a global scale. For each group, we selected five representative taxa and within each group we explored whether risk can be related to any of 10 potential predictors. We then synthesized outcomes across taxa using a meta-analytic approach. High habitat specificity was a consistent predictor across vertebrates, invertebrates and plants, being a universal predictor of risk. Slow life-history traits - large relative offspring size, low fecundity, long generation length -, and narrow altitudinal range were also found to be good predictors across most taxa, but their universality needs to be supported with additional data. Poor dispersal ability was a common predictor of extinction risk among invertebrate and plant taxa, but not consistently among vertebrates. The remaining traits (body size, micro -habitat verticality, trophic level, and diet breadth) were useful to predict extinction risk but only at lower tax-onomical levels. Our study shows that despite the idiosyncrasies among taxa, universal susceptibility to extinction exists and several traits might influence extinction risk for most taxa. Informing conservation prior-itization at lower taxonomic scales should however include taxon-specific trait-based predictors of extinction risk.Peer reviewe

    Assessing the Cost of Global Biodiversity and Conservation Knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160 million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We estimated that an additional US114millionwillbeneededtoreachpre−definedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmaintenancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision-making for biodiversity conservation and sustainable development. Thus, the development and implementation of plans for sustainable long-term financing for them is critical

    Anticipating species distributions:handling sampling effort bias under a Bayesian framework

    Get PDF
    Anticipating species distributions in space and time is necessary for effective biodiversity conservation and for prioritising management interventions. This is especially true when considering invasive species. In such a case, anticipating their spread is important to effectively plan management actions. However, considering uncertainty in the output of species distribution models is critical for correctly interpreting results and avoiding inappropriate decision-making. In particular, when dealing with species inventories, the bias resulting from sampling effort may lead to an over- or under-estimation of the local density of occurrences of a species. In this paper we propose an innovative method to i) map sampling effort bias using cartogram models and ii) explicitly consider such uncertainty in the modeling procedure under a Bayesian framework, which allows the integration of multilevel input data with prior information to improve the anticipation species distributions

    Gymnosperms on the EDGE

    Get PDF
    Driven by limited resources and a sense of urgency, the prioritization of species for conservation has been a persistent concern in conservation science. Gymnosperms (comprising ginkgo, conifers, cycads, and gnetophytes) are one of the most threatened groups of living organisms, with 40% of the species at high risk of extinction, about twice as many as the most recent estimates for all plants (i.e. 21.4%). This high proportion of species facing extinction highlights the urgent action required to secure their future through an objective prioritization approach. The Evolutionary Distinct and Globally Endangered (EDGE) method rapidly ranks species based on their evolutionary distinctiveness and the extinction risks they face. EDGE is applied to gymnosperms using a phylogenetic tree comprising DNA sequence data for 85% of gymnosperm species (923 out of 1090 species), to which the 167 missing species were added, and IUCN Red List assessments available for 92% of species. The effect of different extinction probability transformations and the handling of IUCN data deficient species on the resulting rankings is investigated. Although top entries in our ranking comprise species that were expected to score well (e.g. Wollemia nobilis, Ginkgo biloba), many were unexpected (e.g. Araucaria araucana). These results highlight the necessity of using approaches that integrate evolutionary information in conservation science

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by stan-dards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge productsfor biodiversity conservation, and they are widely used to inform policy and advise decisionmakers and practitioners. However, the financial cost of delivering this information is largelyundocumented. We evaluated the costs and funding sources for developing and maintain-ing four global biodiversity and conservation knowledge products: The IUCN Red List ofThreatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the WorldDatabase of Key Biodiversity Areas. These are secondary data sets, built on primary datacollected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested inthese four knowledge products between 1979 and 2013. More than half of this financingwas provided through philanthropy, and nearly three-quarters was spent on personnelcosts. The estimated annual cost of maintaining data and platforms for three of these knowl-edge products (excluding the IUCN Red List of Ecosystems for which annual costs were notpossible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We esti-mated that an additional US114millionwillbeneededtoreachpre−definedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmainte−nancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines ofdata coverage for all the four knowledge products, and that once achieved, annual mainte-nance costs will be approximately US12 million. These costs are much lower than those tomaintain many other, similarly important, global knowledge products. Ensuring that biodi-versity and conservation knowledge products are sufficiently up to date, comprehensiveand accurate is fundamental to inform decision-making for biodiversity conservation andsustainable development. Thus, the development and implementation of plans for sustain-able long-term financing for them is critical

    A function-based typology for Earth’s ecosystems

    Get PDF
    As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of ‘living in harmony with nature’(1,2). Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management(3). Ecosystems vary in their biota(4), service provision(5) and relative exposure to risks(6), yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth’s ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework

    Do species conservation assessments capture genetic diversity?

    Get PDF
    This work was supported by the Natural Environment Research Council NER/S/A/2006/14303 (MR) and the Leverhulme Trust RF/2/RFG/2007/0314 (TM).The best known system for classifying threat status of species, the IUCN Red List, currently lacks explicit considerations of genetic diversity, and consequently may not account for potential adaptation of species to future environmental change. To address this gap, we integrate range-wide genetic analysis with IUCN Red List assessments. We calculated the loss of genetic diversity under simulated range loss for species of Delonix (Leguminosae). Simulated range loss involved random loss of populations and was intended to model ongoing habitat destruction. We found a strong relationship between loss of genetic diversity and range. Moreover, we found correspondence between levels of genetic diversity and thresholds for ‘non-threatened’ versus ‘threatened’ IUCN Red List categories. Our results support the view that current threat thresholds of the IUCN Red List criteria reflect genetic diversity, and hence evolutionary potential; although the genetic diversity distinction between threatened categories was less evident. Thus, by supplementing conventional conservation assessments with genetic data, new insights into the biological robustness of IUCN Red List assessments for targeted conservation initiatives can be achievedPublisher PDFPeer reviewe
    • …
    corecore