152 research outputs found

    Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    Get PDF
    The response of atmospheric chemistry and dynamics to volcanic eruptions and to a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere–ocean chemistry general circulation model SOCOL-MPIOM (modeling tools for studies of SOlar Climate Ozone Links-Max Planck Institute Ocean Model) covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric dynamics in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15%, which represents the presently discussed highest estimate of UV irradiance change caused by solar activity changes, causes global ozone decrease below the stratopause reaching as much as 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2°C in the mid-stratosphere and to 6°C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere, allowing more water vapour to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx, leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the Dalton Minimum (DM) – this effect is especially well visible for NOx/NOy. Thus, this study also shows the non-linear behaviour of the coupled chemistry-climate system. Finally, we conclude that especially UV and volcanic eruptions dominate the changes in the ozone, temperature and dynamics while the NOx field is dominated by the energetic particle precipitation. Visible radiation changes have only very minor effects on both stratospheric dynamics and chemistry

    Acidosis Activation of the Proton-Sensing GPR4 Receptor Stimulates Vascular Endothelial Cell Inflammatory Responses Revealed by Transcriptome Analysis

    Get PDF
    Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by GPR4 small molecule inhibitors and hold potential therapeutic value

    Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells

    Get PDF
    The mechanisms of Pb(II) toxicity have been studied in human red blood cells using confocal microscopy, immunolabeling, fluorescence-activated cell sorting and atomic force microscopy. The process follows a sequence of events, starting with calcium entry, followed by potassium release, morphological change, generation of ceramide, lipid flip-flop and finally cell lysis. Clotrimazole blocks potassium channels and the whole process is inhibited. Immunolabeling reveals the generation of ceramide-enriched domains linked to a cell morphological change, while the use of a neutral sphingomyelinase inhibitor greatly delays the process after the morphological change, and lipid flip-flop is significantly reduced. These facts point to three major checkpoints in the process: first the upstream exchange of calcium and potassium, then ceramide domain formation, and finally the downstream scramblase activation necessary for cell lysis. In addition, partial non-cytotoxic cholesterol depletion of red blood cells accelerates the process as the morphological change occurs faster. Cholesterol could have a role in modulating the properties of the ceramide-enriched domains. This work is relevant in the context of cell death, heavy metal toxicity and sphingolipid signaling.AGA was a predoctoral student supported by the Basque Government and later by the University of the Basque Country (UPV/EHU). This work was also supported in part by grants from the Spanish Government (FEDER/MINECO BFU 2015-66306-P to F.M.G. and A.A.) and the Basque Government (IT849-13 to F.M.G. and IT838-13 to A.A.), and by the Swiss National Science Foundation

    Federated learning enables big data for rare cancer boundary detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Reconstruction of Lamb weather type series back to the eighteenth century

    Get PDF
    The Lamb weather type series is a subjective catalogue of daily atmospheric patterns and flow directions over the British Isles, covering the period 1861–1996. Based on synoptic maps, meteorologists have empirically classified surface pressure patterns over this area, which is a key area for the progression of Atlantic storm tracks towards Europe. We apply this classification to a set of daily pressure series from a few stations from western Europe, in order to reconstruct and to extend this daily weather type series back to 1781. We describe a statistical framework which provides, for each day, the weather types consistent enough with the observed pressure pattern, and their respective probability. Overall, this technique can correctly reconstruct almost 75% of the Lamb daily types, when simplified to the seven main weather types. The weather type series are described and compared to the original series for the winter season only. Since the low frequency variability of synoptic conditions is directly related to the North Atlantic Oscillation (NAO), we derive from the weather type series an NAO index for winter. An interesting feature is a larger multidecadal variability during the nineteenth century than during the twentieth century

    Spectroscopy of 98Cd^{98}\mathrm{Cd} by two-nucleon removal from 100In^{100}\mathrm{In}

    Get PDF
    International audienceLow-lying states of Cd98 have been populated by the two-nucleon removal reaction (In100,Cd98+γ) and studied using in-beam γ-ray spectroscopy at the Radioactive Isotope Beam Factory at RIKEN. Two new γ transitions were identified and assigned as decays from a previously unknown state. This state is suggested to be based on a π1g9/2−12p1/2−1 configuration with Jπ=5−. The present observation extends the systematics of the excitation energies of the first 5− state in N=50 isotones toward Sn100. The determined energy of the 5− state in Cd98 continues a smooth trend along the N=50 isotones. The systematics are compared with shell-model calculations in different model spaces. Good agreement is achieved when considering a model space consisting of the π(1f5/2, 2p3/2, 2p1/2, 1g9/2) orbitals. The calculations with a smaller model space omitting the orbitals below the Z=38 subshell could not reproduce the experimental energy difference between the ground and first 5− states in N=50 isotones, because proton excitations across Z=38 subshell yield a large amount of correlation energy that lowers the ground states
    • …
    corecore