61 research outputs found

    Myrtaceae endémicas del Perú

    Get PDF
    La familia Myrtaceae es reconocida en el Perú por presentar 20 géneros y 165 especies (Brako & Zarucchi, 1993; Ulloa Ulloa et al., 2004), la mayoría arbustos y árboles. En este trabajo reconocemos 39 especies y una variedad como endemismos en diez géneros. El género más rico en especies endémicas es Eugenia. Las Myrtaceae endémicas se encuentran principalmente en las regiones Bosques Húmedos Amazónicos y Mesoandina, entre los 100 y 3600 m de altitud. Seis especies endémicas se encuentran dentro del Sistema Nacional de Áreas Naturales Protegidas por el Estado.The Myrtaceae are represented in Peru by 20 genera and 165 species (Brako & Zarucchi, 1993; Ulloa Ulloa et al., 2004), mostly shrubs and trees. Here we recognize 39 species and one variety in ten genera as Peruvian endemics. Eugenia is the genus with the largest number of endemic species. Endemic Myrtaceae are found mainly in Humid Lowland Amazonian Forests and Mesoandean regions, between 100 and 3600 m elevation. Six endemic species have been registered to date within Peru’s protected areas system

    Late Holocene vegetation and fire dynamics on the summits of the Guayana Highlands: The Uei-tepui palynological record

    Get PDF
    The summits of the tepuis (sandstone table mountains of the Neotropical Guayana region-Guayana Highlands, GH) have been considered valuable for palaeoecological studies due to their pristine nature, which emphasizes the role of natural (i.e. non-human) factors on ecological change. Anthropogenic fires, very frequent in the surrounding Gran Sabana (GS) uplands, have very rarely been documented in the GH, and are therefore not considered an important ecological factor in the high-tepui biome. This paper reports the palynological and charcoal results of a Late Holocene sequence from the summit of Uei-tepui (2104 m elevation), where extensive signs of fire were recently observed. Since ~. 2000 cal yr BP, the landscape of the study site has been dominated by meadows with occasional shrubs and cloud forests, which underwent expansions and contractions driven by climate changes and fire. A major vegetation shift occurred in the mid-18th century, when a sustained increase in local fires favoured the expansion of the low and spreading Cyrilla racemiflora shrublands at the expense of meadows and forests. Uei-tepui fires most probably were the result of human activities and reached the summit under study from the GS uplands through the vegetated slopes that characterize this tepui. The mostly anthropogenic nature of these fires, especially the more recent ones, is supported by the initial occurrence of wetter conditions, and by its coincidence with significant social changes in the GS indigenous populations, mainly the European contact. The emergence of fire as a disturbing agent of the GH biome highlights the need for an effective management plan in the GS uplands, where the vast majority of present-day fires originate, and designed in collaboration with the indigenous communities. Proactive conservation measures are considered even more important under future warming projections in the area. © 2016 Elsevier B.V.This research was supported by projects BIOCON 2004 90/05, BIOCON 08-188/09 (BBVA Foundation, Spain), CGL2006-00974/BOS (Ministry of Education and Science, Spain) and CGL2009-07069/BOS (Ministry of Science and Innovation, Spain) to V. Rull, and a predoctoral grant to E. Safont from the University of Barcelona. Fieldwork permits were provided by the Ministry of Science and Technology of Venezuela (no. 0000013, 5 Jan. 2007) and the Ministry of Environment of the same country (no. IE-085, 9 Feb. 2007).Peer reviewe

    Paradigmenwechsel in der Arbeitsmarkt- und Sozialpolitik?

    Get PDF
    <div><p>Climate change is forcing many plant species to shift their range in search of adequate environmental conditions, being localized endemic species particularly at risk on mountain summits. The Pantepui biogeographic province, a set of flat-topped mountain summits (called <i>tepuis</i>) of northern South America, contains both high plant diversity and a high degree of endemism. Previous studies based on warming projections for the area suggested that half of the Pantepui endemic flora would disappear due to habitat loss by 2100. In this study, we selected one of the best-explored tepuis, Roraima-tepui, to establish the baseline of diversity and endemism for comparisons with historical data and future monitoring surveys, aimed at testing the hypothesis of upward migration of plants in response to global warming. We also analysed floristic and physiognomic features of the Eastern Tepui Chain (ETC, the mountain range where Roraima is located), and the phytogeographic patterns of both the ETC and Pantepui. The Roraima summit contains 227 species, including 44 new records, 13 exotic species (some of them with high invasive potential), and at least one species new to science. At the ETC level, Roraima is the tepui with highest species richness and degree of endemism, and shows a relatively high floristic similarity with Kukenán and Ilú. Herbaceous species dominate over shrubs on these tepuis, Tramen and Maringma, whereas on Yuruaní, Karaurín and Uei, they reach similar abundances. At the Pantepui level, endemic species have highly localized distribution patterns (17% local endemics). Conservation opportunities are evaluated in light of these results.</p></div

    Engineering the Melanocortin-4 Receptor to Control Constitutive and Ligand-Mediated Gs Signaling In Vivo

    Get PDF
    The molecular and functional diversity of G protein–coupled receptors is essential to many physiological processes. However, this diversity presents a significant challenge to understanding the G protein–mediated signaling events that underlie a specific physiological response. To increase our understanding of these processes, we sought to gain control of the timing and specificity of Gs signaling in vivo. We used naturally occurring human mutations to develop two Gs-coupled engineered receptors that respond solely to a synthetic ligand (RASSLs). Our Gs-coupled RASSLs are based on the melanocortin-4 receptor, a centrally expressed receptor that plays an important role in the regulation of body weight. These RASSLs are not activated by the endogenous hormone α-melanocyte-stimulating hormone but respond potently to a selective synthetic ligand, tetrahydroisoquinoline. The RASSL variants reported here differ in their intrinsic basal activities, allowing the separation of the effects of basal signaling from ligand-mediated activation of the Gs pathway in vivo. These RASSLs can be used to activate Gs signaling in any tissue, but would be particularly useful for analyzing downstream events that mediate body weight regulation in mice. Our study also demonstrates the use of human genetic variation for protein engineering

    Exercise therapy in Type 2 diabetes

    Get PDF
    Structured exercise is considered an important cornerstone to achieve good glycemic control and improve cardiovascular risk profile in Type 2 diabetes. Current clinical guidelines acknowledge the therapeutic strength of exercise intervention. This paper reviews the wide pathophysiological problems associated with Type 2 diabetes and discusses the benefits of exercise therapy on phenotype characteristics, glycemic control and cardiovascular risk profile in Type 2 diabetes patients. Based on the currently available literature, it is concluded that Type 2 diabetes patients should be stimulated to participate in specifically designed exercise intervention programs. More attention should be paid to cardiovascular and musculoskeletal deconditioning as well as motivational factors to improve long-term treatment adherence and clinical efficacy. More clinical research is warranted to establish the efficacy of exercise intervention in a more differentiated approach for Type 2 diabetes subpopulations within different stages of the disease and various levels of co-morbidity

    Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC):The Hot Start experience

    Get PDF
    A fast track “Hot Start” process was implemented to launch the European Bank for Induced Pluripotent Stem Cells (EBiSC) to provide early release of a range of established control and disease linked human induced pluripotent stem cell (hiPSC) lines. Established practice amongst consortium members was surveyed to arrive at harmonised and publically accessible Standard Operations Procedures (SOPs) for tissue procurement, bio-sample tracking, iPSC expansion, cryopreservation, qualification and distribution to the research community. These were implemented to create a quality managed foundational collection of lines and associated data made available for distribution. Here we report on the successful outcome of this experience and work flow for banking and facilitating access to an otherwise disparate European resource, with lessons to benefit the international research community. eTOC: The report focuses on the EBiSC experience of rapidly establishing an operational capacity to procure, bank and distribute a foundational collection of established hiPSC lines. It validates the feasibility and defines the challenges of harnessing and integrating the capability and productivity of centres across Europe using commonly available resources currently in the field

    Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae

    Full text link
    corecore