57 research outputs found

    Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Get PDF
    BACKGROUND: Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. RESULTS: Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. CONCLUSIONS: Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects

    Interrelationships and diversification of Argynnis Fabricius and Speyeria Scudder butterflies

    No full text
    Diverse radiations of insects are often associated with adaptations to host plants, and well-resolved phylogenetic relationships are required to fully understand them. Palearctic Argynnis and related subgenera, together with North American Speyeria butterflies make up a radiation whose species hypotheses are confounded by shared wing colour patterns between sympatric populations of closely related recognized species. Previous studies of this group indicate that Speyeria is a lineage within Argynnis, but sampling in these studies has either involved too few Speyeria species or incomplete sampling of Argynnis species. Thus, no comprehensive phylogenetic analysis exists for all members that answers the question of monophyly of Speyeria, or other subgeneric taxa, and their relationship to Argynnis species. We completed a phylogenetic analysis of all North American Speyeria species and all but one species within Argynnis, using one mitochondrial (cytochrome c oxidase I, COI) and four nuclear genes [elongation factor 1 alpha (EF1α), wingless (WG), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ribosomal protein S5 (RPS5)]. The results indicate three major lineages within Argynnis s.l.: two Palearctic and one containing both Palearctic and Nearctic species. In summary, the phylogenetic analyses suggest the need for reorganization into three natural groups: Argynnis, Fabriciana and Speyeria. Within each of these genera the phylogenetic hypothesis indicates an evolutionary history marked by rapid diversification and potential extinction, followed by ongoing lineage sorting. The position of North American Speyeria is nested within the Palearctic lineages, which indicates that the radiation began in Asia and was fuelled by existing Viola diversity in North America. Dating analyses of Viola and Speyeria corroborate this hypothesis. The current North American Speyeria species are mixed on the tree, indicating a recent and ongoing radiation. These results provide needed clarity on the evolution of this group, which contains species of conservation concern
    corecore