18 research outputs found

    HMGA1 down-regulation is crucial for chromatin composition and a gene expression profile permitting myogenic differentiation

    Get PDF
    Background: High mobility group A (HMGA) proteins regulate gene transcription through architectural modulation of chromatin and the formation of multi-protein complexes on promoter/enhancer regions. Differential expression of HMGA variants has been found to be important for distinct differentiation processes and deregulated expression was linked to several disorders. Here we used mouse C2C12 myoblasts and C2C12 cells stably over-expressing HMGA1a-eGFP to study the impact of deregulated HMGA1 expression levels on cellular differentiation. Results: We found that induction of the myogenic or osteogenic program of C2C12 cells caused an immediate down-regulation of HMGA1. In contrast to wild type C2C12 cells, an engineered cell line with stable overexpression of HMGA1a-eGFP failed to differentiate into myotubes. Immunolocalization studies demonstrated that sustained HMGA1a-eGFP expression prevented myotube formation and chromatin reorganization that normally accompanies differentiation. Western Blot analyses showed that elevated HMGA1a-eGFP levels affected chromatin composition through either down-regulation of histone H1 or premature expression of MeCP2. RT-PCR analyses further revealed that sustained HMGA1a expression also affected myogenic gene expression and caused either down-regulation of genes such as MyoD, myogenin, Igf1, Igf2, Igfbp1-3 or up-regulation of the transcriptional repressor Msx1. Interestingly, siRNA experiments demonstrated that knock-down of HMGA1a was required and sufficient to reactivate the myogenic program in induced HMGA1a over-expressing cells. Conclusions: Our data demonstrate that HMGA1 down-regulation after induction is required to initiate the myogenic program in C2C12 cells. Sustained HMGA1a expression after induction prevents expression of key myogenic factors. This may be due to specific gene regulation and/or global effects on chromatin. Our data further corroborate that altered HMGA1 levels influence the expression of other chromatin proteins. Thus, HMGA1 is able to establish a specific chromatin composition. This work contributes to the understanding of how differential HMGA1 expression is involved in chromatin organization during cellular differentiation processes and it may help to comprehend effects of HMGA1 over-expression occurring in malign or benign tumours

    Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for Retinitis pigmentosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinitis pigmentosa (RP) is an inherited eye disease characterized by the progressive degeneration of rod photoreceptor cells. Mutations in pre-mRNA splicing factors including PRPF31 have been identified as cause for RP, raising the question how mutations in general factors lead to tissue specific defects.</p> <p>Results</p> <p>We have recently shown that the zebrafish serves as an excellent model allowing the recapitulation of key events of RP. Here we use this model to investigate two pathogenic mutations in <it>PRPF31</it>, SP117 and AD5, causing the autosomal dominant form of RP. We show that SP117 leads to an unstable protein that is mislocalized to the rod cytoplasm. Importantly, its overexpression does not result in photoreceptor degeneration suggesting haploinsufficiency as the underlying cause in human RP patients carrying SP117. In contrast, overexpression of AD5 results in embryonic lethality, which can be rescued by wild-type Prpf31. Transgenic retina-specific expression of AD5 reveals that stable AD5 protein is initially localized in the nucleus but later found in the cytoplasm concurrent with progressing rod outer segment degeneration and apoptosis. Importantly, we show for the first time <it>in vivo </it>that retinal transcripts are wrongly spliced in adult transgenic retinas expressing AD5 and exhibiting increased apoptosis in rod photoreceptors.</p> <p>Conclusion</p> <p>Our data suggest that distinct mutations in Prpf31 can lead to photoreceptor degeneration through different mechanisms, by haploinsufficiency or dominant-negative effects. Analyzing the AD5 effects in our animal model <it>in vivo</it>, our data imply that aberrant splicing of distinct retinal transcripts contributes to the observed retina defects.</p

    A Non-Canonical Role for p27\u3csup\u3eKip1\u3c/sup\u3e in Restricting Proliferation of Corneal Endothelial Cells During Development

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The cell cycle regulator p27Kip1 is a critical factor controlling cell number in many lineages. While its anti-proliferative effects are well-established, the extent to which this is a result of its function as a cyclin-dependent kinase (CDK) inhibitor or through other known molecular interactions is not clear. To genetically dissect its role in the developing corneal endothelium, we examined mice harboring two loss-of-function alleles, a null allele (p27−) that abrogates all protein function and a knockin allele (p27CK−) that targets only its interaction with cyclins and CDKs. Whole-animal mutants, in which all cells are either homozygous knockout or knockin, exhibit identical proliferative increases (~0.6-fold) compared with wild-type tissues. On the other hand, use of mosaic analysis with double markers (MADM) to produce infrequently-occurring clones of wild-type and mutant cells within the same tissue environment uncovers a roughly three- and six-fold expansion of individual p27CK−/CK− and p27−/− cells, respectively. Mosaicism also reveals distinct migration phenotypes, with p27−/− cells being highly restricted to their site of production and p27CK−/CK− cells more widely scattered within the endothelium. Using a density-based clustering algorithm to quantify dispersal of MADM-generated clones, a four-fold difference in aggregation is seen between the two types of mutant cells. Overall, our analysis reveals that, in developing mouse corneal endothelium, p27 regulates cell number by acting cell autonomously, both through its interactions with cyclins and CDKs and through a cyclin-CDK-independent mechanism(s). Combined with its parallel influence on cell motility, it constitutes a potent multi-functional effector mechanism with major impact on tissue organization

    Generation of ρ0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses

    Get PDF
    Eukaryotic cells devoid of mitochondrial DNA (ρ0 cells) were originally generated under artificial growth conditions utilizing ethidium bromide. The chemical is known to intercalate preferentially with the mitochondrial double-stranded DNA thereby interfering with enzymes of the replication machinery. ρ0 cell lines are highly valuable tools to study human mitochondrial disorders because they can be utilized in cytoplasmic transfer experiments. However, mutagenic effects of ethidium bromide onto the nuclear DNA cannot be excluded. To foreclose this mutagenic character during the development of ρ0 cell lines, we developed an extremely mild, reliable and timesaving method to generate ρ0 cell lines within 3–5 days based on an enzymatic approach. Utilizing the genes for the restriction endonuclease EcoRI and the fluorescent protein EGFP that were fused to a mitochondrial targeting sequence, we developed a CMV-driven expression vector that allowed the temporal expression of the resulting fusion enzyme in eukaryotic cells. Applied on the human cell line 143B.TK− the active protein localized to mitochondria and induced the complete destruction of endogenous mtDNA. Mouse and rat ρ0 cell lines were also successfully created with this approach. Furthermore, the newly established 143B.TK− ρ0 cell line was characterized in great detail thereby releasing interesting insights into the morphology and ultra structure of human ρ0 mitochondria

    Evaluation of intrinsic velocity-pressure trends from low-pressure P-wave velocity measurements in rocks containing microcracks

    Get PDF
    Dependent on the ‘intrinsic’ effects on the crystal lattice of the rock constituents and the diminishing ‘extrinsic’ effects of pores and microcracks, elastic wave velocity versus pressure trends in cracked rocks are characterized by non-linear velocity increase at low pressure. At high pressure the ‘extrinsic’ influence vanishes and the velocity increase becomes approximately linear. Usually, the transition between non-linear and linear behaviour, the ‘crack closure pressure’, is not accessible in an experiment, because actual equipment is limited to lower pressure. For this reason, several model functions for describing velocity—pressure trends were proposed in the literature to extrapolate low-pressure P-wave velocity measurements to high pressures and, in part, to evaluate the ‘intrinsic’ velocity—pressure trend from low-pressure data. Knowing the ‘intrinsic’ velocity trend is of particular importance for the quantification of the crack influence at low pressure, at high pressure, the ‘intrinsic’ trend describes the velocity trend as a whole sufficiently well. Checking frequently used model functions for suitability led to the conclusion that all relations are unsuitable for the extrapolation and, if applicable, the estimation of the ‘intrinsic’ velocity trend. However, it can be shown that the ‘intrinsic’ parameters determined by means of a suitable model function, the zero pressure velocity and the pressure gradient depend on maximum experimental pressure in a non-linear way. Our approach intends to obtain better estimates of particular parameters from observed non-linear behaviour. A converging exponential function is used to approximate particular trends, assuming that the point of convergence of the function represents a better estimate of the zero pressure velocity and the pressure gradient, respectively. Whether the refined ‘intrinsic’ velocity trend meets the ‘true intrinsic’ velocity trend within acceptable errors cannot be proven directly due to missing experimental data at very high pressure. We, therefore, conclude that our approach cannot ensure absolutely certain ‘intrinsic’ velocity trends, however, it can be shown that the optimized trends approximate the ‘true intrinsic’ velocity trend better as all the other relations do

    Community-developed checklists for publishing images and image analysis

    Get PDF
    Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality of microscopy data is in publications.Comment: 28 pages, 8 Figures, 3 Supplmentary Figures, Manuscript, Essential recommendations for publication of microscopy image dat

    Influence of HMGA1 proteins on myogenesis and heterochromatin organization during differentiation

    No full text
    HMG-Proteine sind nach den Histonen die zweithĂ€ufigste Superfamilie nukleĂ€rer Proteine. Sie binden an DNA und Nukleosomen und induzieren strukturelle VerĂ€nderungen im Chromatin. Sie spielen eine wichtige Rolle in der Dynamik des Chromatins und beeinflussen dadurch DNA-abhĂ€ngige Prozesse, wie Transkription und Replikation. Proteine der HMGA-Familie sind charakterisiert durch konservierte DNA-Bindungsmotive, den AT-Hooks, welche eine Bindung an AT-reiche DNA-Sequenzen vermitteln und durch einen sauren C-Terminus. HMGA-Proteine sind verstĂ€rkt im Heterochromatin konzentriert und stehen in Verbindung mit der Expressionsregulation spezifischer Gene aufgrund der Stabilisierung von Nukleoproteinkomplexen, so genannten Enhanceosomen. HMGA-Proteine spielen des Weiteren eine entscheidende Rolle in verschiedenen Entwicklungsprozessen und bei der Tumorprogression . Um den Einfluss von HMGA1 auf die zellulĂ€re Differenzierung und die Chromatinmodulation zu untersuchen, wurden C2C12 Maus-Myoblastenzellen verwendet. Die Induktion der Myogenese in diesen Zellen geht mit der Herunterregulierung von HMGA1 einher. Durch die Etablierung einer C2C12-Zelllinie, welche ein EGFP-markiertes HMGA1a stabil exprimierte, konnte gezeigt werden, dass eine anhaltende HMGA1-Expression spezifisch die Myogeneseprozess inhibierte, wĂ€hrend die Osteogenese davon unbeeinflusst zu bleiben schien. Dieser hemmende Effekt kann durch die HMGA1-abhĂ€ngige Fehlexpression verschiedener Gene, welche fĂŒr eine einwandfreie Muskeldifferenzierung nötig sind und in die Zellzyklusregulation eingreifen, erklĂ€rt werden. Unter der Verwendung von RNAi konnte gezeigt werden, dass die Herunterregulierung von HMGA1-Proteinen fĂŒr eine korrekte Genexpression und den Muskeldifferenzierungsprozess notwendig ist. WĂ€hrend der terminalen Differenzierung wird die Umorganisation des Chromatins durch die Fusion der Chromozentren offensichtlich. Fotobleichtechniken, wie „fluorescence recovery after photobleaching“ (FRAP) zeigten, dass HMGA1-Proteine mit dem Methyl-CpG-bindenden Protein 2 (MeCP2), welches eine wichtige Rolle in der Chromozentrenfusion spielt, um DNA-Bindungsstellen konkurriert und dieses vom Chromatin verdrĂ€ngt. Diese dynamische Konkurrenz zwischen einem anhaltend exprimierten HMGA1 und MeCP2 trĂ€gt somit zur Inhibition der differenzierungsabhĂ€ngigen Modulation des Chromatins wĂ€hrend der spĂ€ten Myogenese bei. Die Untersuchungen in C2A1a-Zellen lieferten weitere Hinweise dafĂŒr, dass der wesentlichste Umbau des Chromatins in einem Zeitfenster um den dritten Tag nach Induktion der Myogenese stattfindet, an welchem HMGA1 natĂŒrlicherweise nahezu vollstĂ€ndig herunterreguliert sind. In diesem Zeitraum kommt es zur Dissoziation der Chromozentren, zu verĂ€nderten Expressionsmustern in bestimmten Genen, zu Modulationen in Histonmodifikationen (H3K4me2, H3K4me3, H3K27me3), zur Replikations-unabhĂ€ngigen Akkumulation von Histon H3 in den Chromozentren ĂŒber ungefĂ€hr einen Zellzyklus hinweg und zu eine signifikanten Erhöhung der HP1-Dynamik. Durch den Einsatz von Bimolekularer Fluoreszenzkomplementierung (BiFC), die es erlaubt Protein-Protein-Interaktionen in vivo zu visualisieren, konnte gezeigt werden, dass der saure C-Terminus des HMGA mit der ChromodomĂ€ne (CD) des HP1 interagiert. ZusĂ€tzlich ist fĂŒr diese Interaktion die korrekte DNA-Bindung des HMGA nötig. FRAP-Messungen mit HP1-EGFP-Fusionsproteinen in Zellen die wildtypisches oder ein mutiertes HMGA koexprimierten, bestĂ€tigten diese Daten und wiesen darauf hin, dass die HP1-Verweildauer im Heterochromatin maßgeblich von der Gegenwart eines funktionellen HMGA1 abhĂ€ngig ist. Des Weiteren zeigten C2C12-Myoblasten, die HMGA1 natĂŒrlicherweise exprimieren, eine hohe HP1-Verweildauer, die nach HMGA1-knock down drastisch verringert ist. Umgekehrt ist die HP1-Verweildauer nach einer Herunterregulierung von HMGA1 an Tag 3 der Myogenese gering und steigt durch die Koexpression von HMGA1 auf das in Myoblasten gemessene Niveau an. Zusammengenommen zeigen diese Daten, dass die differenzielle Expression von HMGA1 und ihre FĂ€higkeit mit HP1 zu interagieren, sowie ihre Konkurrenz mit MeCP2 um DNA-Bindungsstellen einen entscheidende Rolle in der Regulation der Aufrechterhaltung und PlastizitĂ€t des Heterochromatins wĂ€hrend der Differenzierung spielen. Daher ist eine zeitlich festgelegte Herunterregulierung von HMGA1 notwendig, um die Modulation des Chromatins und dadurch den Differenzierungsprozess zu ermöglichenHMG proteins are an abundant superfamily of nuclear proteins that bind to DNA and nucleosomes and induce structural changes in the chromatin fiber. These proteins play an important role in chromatin dynamics and thereby impact DNA-related processes like transcription and replication. Proteins of the HMGA family are characterized by conserved DNA-binding domains, the AT hooks, which mediate binding to AT-rich DNA, and an acidic c-terminal domain. HMGA proteins concentrate in heterochromatin and are linked to specific gene regulation by stabilizing nucleoprotein complexes called enhanceosomes. Furthermore, HMGA proteins play an important role in several developmental processes and in tumor progression. C2C12 mouse myoblast cells were used to explore the impact of HMGA1 proteins on differentiation and chromatin modulation. After induction of myogenesis HMGA1 proteins revealed a downregulation. By establishing a C2C12 cell line stably expressing an EGFP tagged HMGA1a (C2A1a) it could be shown that sustained HMGA expression inhibited specifically the myogenic process while osteogenesis seemed to be unaffected. This inhibition can be explained by an HMGA1-dependent misexpression of several genes that are required for proper myogenic differentiation and genes involved in cell cycle regulation. Using RNAi techniques it could be demonstrated that downregulation of HMGA1 proteins is required to restore proper gene expression and to enable the myogenic program. During terminal differentiation chromatin remodeling is apparent by fusion of chromocenters. Photobleaching experiments like “fluorescence recovery after photobleaching” (FRAP) revealed that HMGA1 proteins compete with the methyl-CpG-binding protein 2 (MeCP2), which plays an important role during the fusion of chromocenters, for DNA-binding sites. Thereby MeCP2 is displaced from chromatin. This dynamic competition between constitutively expressed HMGA1 and MeCP2 thereby leads to an inhibition of the differentiation dependent modulation of the chromatin during late myogenesis. Studies in C2A1a cells revealed a set of evidences indicating that further major chromatin remodeling occurs around day three after induction when HMGA1 proteins are downregulated. At this time-frame chromocenters dissociate, expression patterns of genes are switching, histone modifications are modulated (H3K4me2, H3K4me3, H3K27me3), histone H3 accumulates in a replication independent mode in chromocenters for approximately one cell cycle, and dynamics of HP1 proteins are significantly increased. Applying bimolecular fluorescence complementation (BiFC) that allows visualization of protein-protein interactions in living cells I could show that the acidic domain of HMGA interacts with the chromodomain (CD) of HP1. In Addition, the proper DNA-binding of HMGA1 is necessary to accomplish a functional interaction between HP1 and HMGA. FRAP measurements of HP1-EGFP in cells coexpressing wild type or mutated HMGAs corroborated theses findings and indicated that the HP1 residence time in heterochromatin strongly depends on the presence of functional HMGA proteins. Furthermore, HP1 residence time is high in C2C12 myoblasts which express HMGA1 but low after HMGA1 knock down. Vice versa, it is low in C2C12 cells at day 3 of differentiation when HMGA proteins are downregulated, but high when HMGA1 proteins are coexpressed. Together, these data indicate that the differential expression of HMGAs and their capacity to interact with HP1 proteins and compete with MeCP2 plays an important role in the regulation of heterochromatin maintenance and plasticity during differentiation. Therefore, the downregulation of HMGA1 proteins is required to allow chromatin remodeling and to enable the differentiation program

    biovoxxel/bv3dbox: BioVoxxel 3D Box - v1.17.0

    No full text
    &lt;p&gt;&lt;strong&gt;Full Changelog&lt;/strong&gt;: https://github.com/biovoxxel/bv3dbox/compare/bv3dbox-1.16.0...bv3dbox-1.17.0&lt;/p&gt

    biovoxxel/BioVoxxel-Figure-Tools: BioVoxxel Figure Tools - v2.2.0

    No full text
    &lt;p&gt;&lt;strong&gt;Full Changelog&lt;/strong&gt;: https://github.com/biovoxxel/BioVoxxel-Figure-Tools/compare/bvft-1.13.1...bvft-2.2.0&lt;/p&gt
    corecore