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S U M M A R Y
Dependent on the ‘intrinsic’ effects on the crystal lattice of the rock constituents and the dimin-
ishing ‘extrinsic’ effects of pores and microcracks, elastic wave velocity versus pressure trends
in cracked rocks are characterized by non-linear velocity increase at low pressure. At high pres-
sure the ‘extrinsic’ influence vanishes and the velocity increase becomes approximately linear.
Usually, the transition between non-linear and linear behaviour, the ‘crack closure pressure’,
is not accessible in an experiment, because actual equipment is limited to lower pressure. For
this reason, several model functions for describing velocity—pressure trends were proposed in
the literature to extrapolate low-pressure P-wave velocity measurements to high pressures and,
in part, to evaluate the ‘intrinsic’ velocity—pressure trend from low-pressure data. Knowing
the ‘intrinsic’ velocity trend is of particular importance for the quantification of the crack
influence at low pressure, at high pressure, the ‘intrinsic’ trend describes the velocity trend as
a whole sufficiently well. Checking frequently used model functions for suitability led to the
conclusion that all relations are unsuitable for the extrapolation and, if applicable, the estima-
tion of the ‘intrinsic’ velocity trend. However, it can be shown that the ‘intrinsic’ parameters
determined by means of a suitable model function, the zero pressure velocity and the pressure
gradient depend on maximum experimental pressure in a non-linear way. Our approach in-
tends to obtain better estimates of particular parameters from observed non-linear behaviour.
A converging exponential function is used to approximate particular trends, assuming that the
point of convergence of the function represents a better estimate of the zero pressure velocity
and the pressure gradient, respectively. Whether the refined ‘intrinsic’ velocity trend meets
the ‘true intrinsic’ velocity trend within acceptable errors cannot be proven directly due to
missing experimental data at very high pressure. We, therefore, conclude that our approach
cannot ensure absolutely certain ‘intrinsic’ velocity trends, however, it can be shown that
the optimized trends approximate the ‘true intrinsic’ velocity trend better as all the other
relations do.

Key words: Numerical approximations and analysis; Microstructures; Wave propagation;
Acoustic properties.

1 I N T RO D U C T I O N

Numerous laboratory experiments have shown that the elastic be-
haviour of rocks as a reaction on confining pressure P is mainly
controlled in two ways: (i) the reduction of porosity and the pro-
gressive closure of microcracks, termed ‘extrinsic’ effects (ii) the
‘intrinsic’ effects on the crystal lattice of the rock constituents
(e.g. Birch 1960). In experiments, the velocity–pressure trend is
characterized by rapid non-linear increase of the elastic (P-, S-)
wave velocities at low pressure mainly as a consequence of the

‘extrinsic’ effects, and a much smaller approximately linear increase
of the elastic wave velocities at higher pressure due to the ‘intrinsic’
effects (Fig. 1). The shape of the velocity–pressure equation de-
pends on several parameters such as the rock composition, porosity
and the direction in which the velocity is measured (anisotropy; e.g.
Siegesmund 1996). Thus, the transition from non-linear to linear
velocity change (the ‘crack closure pressure’) is largely sample-
dependent.

For mantle rocks, Christensen (1974) reports crack influence up
to 1000 MPa, that is, experiments to pressures much larger than
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Figure 1. Relationship between wave velocitiy V and confining pressure
P (schematic). V 0: zero pressure velocity in the experiment; V i

0 : ‘intrinsic’
zero pressure velocity; dV /dP: ‘intrinsic’ pressure derivative; Pc: ‘crack
closure pressure’, at which the ‘extrinsic’ effects vanish. The maximum
pressure in the experiment is usually lower than Pc.

1000 MPa are required to prove constant velocity gradients. How-
ever, actual equipment is often restricted to lower pressures, for
example, 400 MPa (Pros et al. 1998) or 600 MPa (Kern et al. 2002).
Frequently, it may be desirable to extrapolate velocity trends to
pressures beyond the measuring range, especially for investigating
composition of the lower continental crust, which requires velocity
data at pressures of 500 MPa to as high as 1500 MPa. Such extrapo-
lation applying model functions is possible (Ullemeyer & Popp
2004), but the accuracy of the extrapolated velocities—especially
at very high pressures—has not been verified.

Furthermore, prediction of the ‘intrinsic’ velocity trend from the
experimental velocity data may be desirable for describing the crack
influence at low pressures in a quantitative way. Due to lattice pre-
ferred orientation and elastic anisotropy of the rock constituents
(e.g. Mainprice et al. 2000), which control the ‘intrinsic’ velocity
trend, and due to anisotropy of the crack fabric (e.g. Siegesmund
et al. 1993), both the experimental and the ‘intrinsic’ velocity trend
vary in dependence on the sample direction considered in the ex-
periment. If, for example, the whole set of elastic constants needs
to be calculated from 3-D spherical sample measurements, such
anisotropic property of the sample is significant, because the results
of the calculations are highly sensitive to imposed starting val-
ues (Klima 1973; Jech 1991). Especially the comparison of ‘bulk
rock’ and ‘intrinsic’ elastic constants—synonymous to the above-
mentioned quantitative description of the crack fabric—requires
accurate experimental data and reliable estimates of the ‘intrinsic’
velocity trend as well.

In field seismics, laboratory estimates of the elastic wave veloc-
ities are useful for the processing of geophysical data, the expla-
nation of seismic structures and the verification of P- and S- wave
velocity versus depth relationships in the Earth’s crust (Christensen
& Mooney 1995; Lin et al. 2010). Empirical relations between
particular wave velocities, density (ρ) and Poisson’s ratio (σ ) are
used to infer, for example, S-wave velocity, ρ or σ from P-wave
measurements (Brocher 2005 and references therein). To ensure
comparability of field and experimental data, the error of the lab-
oratory measurements should be much better than the effect to be
described. To give an example, a 10 per cent serpentinization of
ultramafic rocks decreases P-wave velocity by about 0.3 km s−1

(Christensen 1966, 1978), consequently, the overall error of an ex-

periment to verify such effect should significantly fall below this
magnitude.

The pressure dependence of the elastic wave velocities and the
‘intrinsic’ velocity trend in a distinct sample direction may be de-
rived from mechanical theories (e.g. Levin et al. 2004 and ref-
erences therein). However, the modelling requires information on
fabric parameters like rock composition, elastic constants and crys-
tallographic preferred orientations of the rock constituents, crack
density, crack aspect ratio and crack orientation. In this study, we
want to propose a solely empirical solution for the extrapolation
of velocity–pressure trends from low-pressure velocity measure-
ments, emphasizing in particular determination of the ‘intrinsic’
velocity–pressure trend, which is given by the velocity at zero pres-
sure, V i

0 , and the ‘intrinsic’ pressure derivative, dV /dP (Fig. 1).
Focusing on determination of the ‘intrinsic’ velocity trend is moti-
vated by its significance for the quantification of the crack influence
on the elastic wave velocities, as denoted above. Moreover, the
‘intrinsic’ velocity trend fully describes the velocity trend at high
pressure. Except for experimental data the method requires no addi-
tional input and is, therefore, applicable even in case of completely
missing fabric information about the sample under investigation.

First, we checked several model functions proposed in the lit-
erature with respect to their suitability for extrapolation. P-wave
measurements on four samples (amphibolite, pyroxenite, serpenti-
nite and metagabbro) with different crack closure behaviour and
velocity magnitudes were performed at Department of Geology
and Geophysics, Madison, University of Wisconsin, USA within
the pressure range 10 MPa ≤ P ≤ 1000 MPa. The pressure range
from 10 MPa to 600 MPa was used to fit model functions to the data
and the P-wave trends given by the model functions were extrapo-
lated to 1000 MPa. The P-wave data measured at 800 and 1000 MPa
served as a reference to verify reliability of the extrapolated data.
Secondly, P-wave measurements on two more samples (amphibo-
lite and gneiss) at Institut für Geowissenschaften, Kiel, Germany
are used to demonstrate how the ‘intrinsic’ pressure gradient may
be determined more accurately from lower pressure experiments to
Pmax = 600 MPa. For description of the laboratory equipment refer
to Christensen (1985) and Kern et al. (2002), respectively. Accuracy
of the velocity measurements at Madison is reported to be �1 per
cent (Christensen 1985), however, due to missing correction for
sample compression, the bulk error increases to about 1 per cent
(Birch 1960). The overall error of the Kiel data was determined to
be <1 per cent (Kern et al. 2002). In view of the goals of this study,
such error level is of minor significance.

2 S U G G E S T E D M O D E L F U N C T I O N S
F RO M T H E L I T E R AT U R E

Several relations were proposed to describe the pressure dependence
of the elastic wave velocities in rocks; Greenfield & Graham (1996)
provide earlier references. Wepfer & Christensen (1991) used a
superposition of two exponential functions,

V1(a1, b1, c1, d1) = a1(P/100)b1 + c1(1 − e−d1 P ), (1)

which appears to describe velocity—pressure trends of many
rocks well (the subscript 1 denotes eq. (1), etc., throughout the
manuscript). For 0 < b1 < 1 and 0 < d1 < 1, respectively, both
terms of eq. (1) are characterized by monotonous growth for P →
∞; the approximated gradient is assumed to resemble the ‘intrinsic’
pressure derivative dV /d P . However, the constants a1, b1, c1 and d1

are solely empirical and give no direct description of the ‘intrinsic’
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velocity trend. The relation proposed by Pros et al. (1998),

V2(a2, b2, c2, d2) = a2 + b2 P − c210−P/d2 , (2)

is based on the assumption that the ‘intrinsic’ velocity increase with
increasing confining pressure is linear and the ‘extrinsic’—first of
all crack-induced—velocity increase with increasing pressure may
be described by an exponential term. The constants a2, b2, c2 and d2

are related to the physical state of rock such that a2 is the velocity
at zero pressure, b2 is the assumed ‘intrinsic’ pressure derivative
of the crack-free sample, c2 is the crack influence on velocity at
atmospheric pressure, d2 is the confining pressure at which the
non-linear crack influence is reduced to 10 per cent. The rela-
tion proposed independently by Freund (1992) and Greenfield &
Graham (1996) uses base ‘e’ instead of base 10 in the exponential
term of eq. (2), that is, both relations are similar with the exception
that the ‘crack closure parameter’ d2 does not bear any direct phys-
ical relationship to the crack closure behaviour. Since the elastic
constants are directly proportional to the square of the elastic wave
velocities, Greenfield & Graham (1996) also discussed suitability
of the squared form of eq. (2), but concluded that most experimental
velocity–pressure trends may be adequately described by the linear
relationship. Wang et al. (2005) tried to detect the critical pressure,
Pc, where the transition from non-linear to linear velocity change
takes place. They modelled the entire velocity–pressure trend as
being described independently by two relations,

V3(a3, b3, c3) = a3(ln P)2 + b3 ln P + c3 (P ≤ Pc) (3a)

V3(d3, e3) = d3 P + e3 (P ≥ Pc), (3b)

where eq. (3a) is used to fit the data in the non-linear regime and
eq. (3b) models the ‘intrinsic’ velocity trend with pressure. The
procedure works as follows: first, the experimental data are replaced
by a smoothing spline function of 1 MPa interval step size. Secondly,
Pc is determined on the basis of the correlation coefficient r2 for
the linear fit in the pressure range Pc ≤ P ≤ Pmax (Pmax is the
maximum pressure used in the experiment), which should exceed a
given threshold. Starting at the lowest pressure and assuming it is
Pc, eq. (3b) is to be fitted to the data. Whenever r2 < threshold, the
next value of the spline function is taken as Pc until r2 ≥ threshold.
Although the method is applicable for Pc < Pmax only, it is superior
to the often-used intuitive definition of Pc and, therefore, considered
in the following.

3 R E S U LT S O F F I T A N D
E X T R A P O L AT I O N

Eqs (1), (2) and (3a)/(3b) were fit to the increasing pressure loop
of the experimental data obtained at Madison in the pressure range
10 MPa ≤ P ≤ 600 MPa. Visual judgement of the fits (Figs 2(a)–(c))
as well as RMS errors (Table 1) confirm close agreement of the
model functions to the experimental data. Frequently, the RMS
errors are at least one order of size less than experimental errors E at
P = 600 MPa, except for eqs (3a)/(3b), where the error magnitudes
are somewhat larger (in the worst case, the experimental error E is
two times the RMS error of the fits). Hence, the fit errors should not
increase bulk error level considerably.

Significant differences of RMS errors for the amphibolite sam-
ple let us conclude that eq. (1) generally offers the better results. It
best matches the rapidly changing velocity gradients dV /d P at low
pressures. Note that the fit to the VP of the amphibolite sample is
characterized by maximum bulk errors, indicating that its velocity

trend is hard to describe by any relation. The critical pressure Pc

of eqs (3a)/(3b) is located within the data range (183 MPa ≤ Pc ≤
470 MPa; Fig. 2c), demonstrating that, in a statistical sense, the onset
of linear velocity increase with pressure occurs at rather low pres-
sure. Comparing the ‘intrinsic’ parameters of eqs (2) and (3b), the
difference between zero pressure velocities a2 and d3, respectively,
is usually ≤1 per cent, except for the amphibolite sample where
the 2 per cent difference between particular parameters exceeds the
experimental error of 1 per cent (Table 2). Pressure derivatives b2

and e3 differ significantly more, in case of the amphibolite sample,
parameter b2 is twice parameter e3.

The distribution of fit errors, �V (P) = Vexp(P) − V f it (P), de-
livers additional information. Mostly, the error functions do not
scatter statistically around the zero line but show consistent de-
viation to positive or negative values over a wide pressure range
(Figs 2(d)–(f)). This behaviour is most prominent for the fit of
eq. (2) to the amphibolite sample, where the errors are positive in
the range 100 MPa < P < 500 MPa and become negative above
P = 600 MPa (Fig. 2e). Generally, eq. (1) offers the smallest error
magnitudes within the fit range (|�V 1| < 0.04 km s−1; |�V 2| <

0.07 km s−1; |�V 3| < 0.09 km s−1).
Extrapolated velocity trends to 1000 MPa are different for all

relations, and this holds true for trends and magnitudes of �Vi as
well. The main observation is that extrapolated velocities are consis-
tently too high or too low compared to the experimental velocities.
In case of eq. (1), calculated velocities are mostly too small (�V 1 <

0.03 km s−1 at P = 1000 MPa), except for the amphibolite sample
where the calculated velocity is too high (�V 1 = −0.05 km s−1;
Fig. 2d). In case of eqs (2) and (3b), extrapolated velocities are
generally too high. Mostly, �V 2 is smaller than −0.1 km s−1 at P =
1000 MPa, but approaches −0.2 km s−1 for the amphibolite sample,
which is characterized by the poorest fit (Fig. 2e). Magnitudes of
�V 3 are close together and do not exceed −0.07 km s−1 at P =
1000 MPa (Fig. 2f). As a consequence of consistent deviation of
extrapolated velocities to higher velocities, estimated pressure gra-
dients b2 (eq. 2) and e3 (eq. 3b) are too large. From experiments
to 3 GPa, Christensen (1974) derived pressure gradients of about
0.15 ∼ 0.16 × 10−3 km s−1 MPa−1 for two pyroxenite samples.
These are two to three times smaller than gradients obtained from
eqs (2) and (3b) (Table 2) and, therefore, support this observation.

Although eq. (1) best extrapolates the velocity trends, estimation
of the ‘intrinsic’ velocity trend from the above denoted monotonous
growth of exponential functions may be erroneous due to ob-
served systematic errors. Eq. (2) fails, because the ‘intrinsic’ trend,
a2 + b2 P , is hard to separate from non-linear low-pressure mea-
surements with sufficient accuracy, leading to systematic errors of
extrapolated velocity trends as well. Eqs (3a)/(3b) fail because the
critical pressure Pc is constrained to be smaller than Pmax of the
fit data. Systematic deviations at pressures >Pmax are interpreted
such that, in fact, Pc exceeds Pmax. In summary, observed consistent
discrepancies between experimental and extrapolated velocities in-
dicate that all relations are unsuitable for reliable extrapolation of
pressure–velocity trends to high pressures, in particular, for re-
liable evaluation of ‘intrinsic’ velocity trends from low-pressure
measurements.

4 T H E A LT E R NAT I V E A P P ROA C H

Our approach intends to evaluate the ‘intrinsic’ velocity trend from
all shapes of the velocity—pressure function, avoiding in particular
systematic errors, which disqualify the relations discussed above.

C© 2011 The Authors, GJI, 185, 1312–1320
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Figure 2. Results of curve fit and velocity extrapolation according to (a) eq. (1), (b) eq. (2) and (c) eqs (3a)/(3b). Symbols refer to experimental data,
approximated functions are given by solid lines. Experimental error bars are smaller than symbol size (60.1 ∼ 80.0 × 10−3 km s−1), for particular error
magnitudes refer to Table 1. In diagram (c), critical pressures Pc—corresponding to the transition from non-linear to linear behaviour—are indicated by vertical
bars. Diagrams (d)–(f) illustrate particular errors �V = V exp − V fit of the fits and of the extrapolated velocity trends.

Table 1. RMS errors of the fits to the Madison data according to eqs (1),
(2) and (3a)/(3b) considering the pressure range ≤ 600 MPa. Parameter E
refers to the experimental error at P = 600 MPa assuming a bulk error of
1 per cent.

Eq. (1) Eq. (2) Eq. (3a)/(3b) E
(10−3 km s−1) (10−3 km s−1) (10−3 km s−1) (10−3 km s−1)

Amph. 14.6 31.8 32.2 72.7
Pyrox. 3.4 3.2 25.3 80.0
Serp. 7.4 6.7 24.2 60.1
Metagab 6.6 4.2 16.5 65.8

We propose to refine the ‘intrinsic’ terms obtained by one of eqs (2)
or (3b) in a subsequent procedure. The optimization should be
solely dependent on the refinement procedure itself, that is, the basic
equation to be applied should avoid restrictions for the ‘intrinsic’
terms. This requirement is met by eq. (2) only.

We take advantage of the observation that magnitudes of the
‘intrinsic’ parameters—a2 and b2 in case of eq. (2)—change in de-
pendence on maximum pressure Pmax applied in the fit (Greenfield
& Graham 1996). Non-linear increase (a2) or decrease (b2) were
observed, with both parameters approximating a constant value at
pressure much higher than ‘crack closure pressure’. This behaviour

C© 2011 The Authors, GJI, 185, 1312–1320
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Table 2. Comparison of the ‘intrinsic’ parameters of the fits to the Madison data according
to eqs (2) and (3b).

Eq. (2) Eq. (3b)

a2 b2 d3 e3

(km s−1) (10−3 km s−1 MPa−1) (km s−1) (10−3 km s−1 MPa−1)

Amph. 6.96 0.5555 7.10 0.2704
Pyrox. 7.83 0.2860 7.85 0.2399
Serp. 5.74 0.4640 5.80 0.3554
Metagab. 6.40 0.2990 6.40 0.3000

Figure 3. Low pressure (Pmax = 611 MPa) P-wave measurements in three perpendicular sample directions X, Y, Z. The data are used for independent fits to
various maximum pressures (304 ≤ Pmax ≤ 611 MPa) and subsequent refinement of parameters a2 and b2.

Table 3. RMS errors of the fits to the Kiel data. E: experimental error at P = 611 MPa; Efit:
error range of the fits to various maximum pressures according to eq. (2); Eref : error of the
refinement fits to parameters a2 and b2 according to eq. (4).

Eref

E Efit a2 b2

(10−3 km s−1) (10−3 km s−1) (10−3 km s−1) (10−6 km s−1 MPa−1)

Amph. X 68.3 8.4 ∼ 12.8 0.48 1.67
Y 66.5 6.7 ∼ 14.1 0.57 2.52
Z 65.7 17.7 ∼ 32.9 0.74 4.80

Gneiss X 63.8 8.5 ∼ 12.0 1.07 0.46
Y 63.8 7.6 ∼ 14.6 0.97 0.38
Z 57.0 7.3 ∼ 13.2 1.19 0.48

is a clear indication that the ‘intrinsic’ velocity trend cannot be re-
produced accurately from low-pressure experiments, however, ob-
served non-linear convergence can be used to obtain better estimates
of parameters a2 and b2 from these measurements.

First, independent fits to successively increasing maximum pres-
sures Pmax were performed to obtain trends of parameters a2 and
b2 against the Pmax. The number of data from the Madison experi-
ments is too small for that purpose, hence, P-wave data measured
on amphibolite and gneiss sample at the triaxial pressure device at
Institut für Geowissenschaften, Kiel, Germany (Kern et al. 2002)
applying small pressure increments (�P = 12 MPa for P ≤ 50 MPa;
�P = 25 MPa for P ≤ 100 MPa; �P = 50 MPa for P > 100 MPa;
Fig. 3) are used to perform the fits to maximum pressures of Pmax =
304–355, 406–457, 508–560 and 611 MPa. Hornblende (82 per
cent) is the main constituent of the amphibolite sample, the gneiss
sample consists of quartz (38 per cent), phyllosilicates (34 per cent),

plagioclase (25 per cent) and minor potassic feldspar (Ullemeyer
et al. 2006, samples TW11 and TW9 therein). Due to crystallo-
graphic preferred orientation of hornblende, quartz and phyllosil-
icates, and due to anisotropy of pore space distributions, P-wave
trends of both samples are different for the principal directions X,
Y, Z of the structural reference frame, in which the measurements
were performed (Ullemeyer et al. 2006). RMS errors Efit of the indi-
vidual fits range from 6.7 ∼ 32.9 × 10−3 km s−1 for the amphibolite
sample and from 7.3 ∼ 14.6 × 10−3 km s−1 for the gneiss sample,
bulk experimental errors E include 65.7 ∼ 68.3 × 10−3 km s−1 and
57.0 ∼ 63.8 × 10−3 km s−1, respectively (refer to Table 3 for de-
tails). The error magnitudes are similar to the fits to the Madison
data, hence, the same conclusions concerning goodness of the fits
and experimental errors are valid.

Secondly, observed convergence of parameters a2 and b2 is used
to describe particular trends against the Pmax independently from

C© 2011 The Authors, GJI, 185, 1312–1320
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each other by means of an exponential function,

y(A, B, C) = A − Be−C Pmax (4)

(A, B, C are coefficients of the function, y is one of parameters a2 and
b2, determined by unweighted fits to various maximum pressures
according to eq. (2)). The point of convergence, A, is expected to rep-
resent the ‘true’ magnitudes of parameters a2 and b2, respectively.
Since parameter a2 increases with Pmax, the exponential function is
inverse (B > 0), in case of parameter b2 the function decays (B <

0). RMS errors Eref of the refinement fits range from 0.48 ∼ 1.19 ×
10−3 km s−1 (a2) to 0.38 ∼ 4.8 × 10−6 km s−1 MPa−1 (b2) (Table 3),
demonstrating very close agreement of the model function to the
data and suitability of eq. (4) for the refinement from the statistical
side of view.

As it was predicted, parameters a2 and b2 change in dependence
on maximum pressure of the fits (Fig. 4, symbols), proving that a
maximum pressure of 611 MPa in the experiments is too low to
determine the ‘intrinsic’ parameters accurately by means of curve
fit according to eq. (2). The extent of changes is different, compare
trends of b2 of the amphibolite sample as an example. Most trends
determined in such a way are non-linear and tend to some value,
but few trends appear to be linear, for example, X direction of the
amphibolite sample (Fig. 4). Nevertheless, eq. (4) was applied to
all data sets and, always, convergence of the extrapolated trend was

observed. Deviations of the approximated points of convergence
and corresponding values from the fits to Pmax = 611 MPa may be
small (e.g. X direction of the gneiss sample: A = 6.19 km s−1, a2

(P = 611 MPa) = 6.14 km s−1; Fig. 4), but very large discrepancy
holds true as well (X direction of the amphibolite sample: A =
7.84 km s−1, a2 (P = 611 MPa) = 6.51 km s−1; Fig. 4). Obviously,
the latter estimate of parameter a is erroneous, which is confirmed by
the large error assigned to A (±36 per cent ≡ ±2.79 km s−1). Large
error concerning parameter A = b2 is also observed for Y direction
of the gneiss sample (±20 per cent ≡ ±0.038 10−3 km s−1 MPa−1;
Fig. 4). In both these cases, the results of refinement are doubtful
and should not be interpreted, whereas small errors (frequently
<1 per cent) indicate statistically reliable results.

5 D I S C U S S I O N

Experiments to very high pressures with an adequate number of
data in the low-pressure range would have been required to verify
the results of parameter refinement directly. Suitable equipment is
currently not available. The unique data set of Christensen (1974)
fails, because the number of data is too small to perform indepen-
dent fits to various maximum pressures in the low-pressure range.
Thus, reliability of our approach cannot be proven by experimen-
tal data, however, several observations indicate that the refined

Figure 4. Magnitudes of the ‘intrinsic’ parameters a2 and b2 in dependence on maximum pressure Pmax in independent fits to the data shown in
Fig. 3 (symbols). Extrapolated trends of parameters a2 and b2 to 1500 MPa applying eq. (4) are indicated by lines. Points of convergence A (the op-
timized parameters a2 and b2) are given in the legend and illustrated by horizontal lines in the graph. Percent values indicate errors of parameter A.
∗ not shown for better scaling (top left graph).

C© 2011 The Authors, GJI, 185, 1312–1320
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Figure 5. Comparison of ‘intrinsic’ velocity trends, derived from optimized parameters a2 and b2 according to eq. (4) (solid lines), from fits according to eq.
(2) (dashed lines), and from fits according to eq. (3b) (dash-dotted lines). Symbols indicate experimental data. Sample directions X of the amphibolite and Y
of the gneiss are avoided due to large errors of parameter fit (see text for discussion). Critical pressures Pc belonging to eq. (3b) are indicated by vertical bars.
For better visualization, scaling of the diagram at the left is different for Y and Z direction.

‘intrinsic’ velocity trends approximate the ‘true intrinsic’ veloc-
ity trends better as the trends obtained via eqs (2) and (3a)/(3b) do.
Since eq. (2) provides the basis of our refinement procedure, the dis-
cussion focuses on the comparison of the ‘intrinsic’ velocity trends
derived from eqs (2) and (4), but the results of eqs (3a)/(3b) will
be discussed as well. In the following, refinement runs with large
error magnitudes of parameter A—the amphibolite X and gneiss Y
sample directions—were avoided.

Visual inspection of the extrapolated trends presented in Fig. 4
indicates that most cracks are actually closed at pressures Pmax =
1000 ∼ 1500 MPa, because changes of gradients become small
within this pressure interval. This observation holds true for both
samples and is confirmed by the experiments of Christensen (1974)
on mantle rocks and by the findings of Greenfield & Graham (1996).
Such conformity implies that optimized parameters a2 and b2 are
not completely unfounded and, due to convergence of eq. (4), the
refinement leads to better estimates of particular parameters anyway.

Direct evidence for improved ‘intrinsic’ velocity trends can be
derived from their relation to the experimental data. In agreement
with theory (‘intrinsic’ velocity represents an upper limit of pos-
sible velocities), the optimized ‘intrinsic’ functions never intersect
the experimental functions as the ‘intrinsic’ functions estimated by
means of eq. (2) do and, accordingly, the ‘crack closure pressure’
Pc locates beyond the data range (Fig. 5). The unrealistic conse-
quence of such intersection is that the functions do not converge
but diverge at higher experimental pressure. This is best visible
for Z direction of the amphibolite sample (Fig. 5), where the ‘in-
trinsic’ function intersects the experimental function over a wide
pressure range of 200 ∼ 450 MPa. Always, eq. (2) leads to lowest

Table 5. Extrapolated ‘intrinsic’ velocities at P = 1500 MPa.

Eq. (4) Eq. (2) Eq. (3b)
(km s−1) (km s−1) (km s−1)

Amph. Y 7.00 7.15 7.01
Z 7.09 7.32 6.96

Gneiss X 6.70 6.77 6.63
Z 6.17 6.35 6.19

‘intrinsic’ velocities at zero pressure and to maximum ‘intrinsic’
gradients, the maximum discrepancy between gradients approaches
factor two (Table 4). Obviously, gradients b2 are too large, which is
confirmed by the visual impression of discontinuity at Pmax (Fig. 5).
Furthermore, a2 is clearly too small. The effect is twofold (i) esti-
mated ‘intrinsic’ velocities for P = 1500 MPa are the highest, the
maximum deviation to our refined velocity estimate is 0.23 km s−1

(Fig. 5, Table 5) (ii) the area representing the crack-induced ve-
locity decrease at low pressures (Fig. 1) decreases significantly,
that is, quantification of the crack influence especially at very low
pressure is falsified. All these observations confirm that plain expo-
nential functions are unsuitable to describe the non-linear part of the
velocity—pressure function accurately, with the consequence that
the ‘intrinsic’ velocity trend cannot be determined correctly from
low-pressure experiments by means of eq. (2).

Occasionally, the gap between the refined ‘intrinsic’ velocity
trend and the experimental velocities at maximum experimental
pressure appears to be rather large (Z directions of both samples;
Fig. 5), implying that the ‘crack closure pressure’ locates at very
high pressure. Whereas the experimental data set represents a lower

Table 4. Comparison of the ‘intrinsic’ parameters of the fits to the Kiel data according to eqs (4) (a∗
2 , b∗

2 : optimized parameters
a2 and b2), eq. (2) (parameters a2 and b2) and eq. (3b) (parameters d3 and e3).

Eq. (4) Eq. (2) Eq. (3b)

a∗
2 b∗

2 a2 b2 d3 e3
(km s−1) (10−3 km s−1 MPa−1) (km s−1) (10−3 km s−1 MPa−1) (km s−1) (10−3 km s−1 MPa−1)

Amph. Y 6.43 0.3815 6.34 0.5400 6.41 0.3989
Z 6.29 0.5317 6.12 0.8015 6.31 0.4301

Gneiss X 6.19 0.3387 6.14 0.4229 6.22 0.2715
Z 5.46 0.4738 5.29 0.7085 5.38 0.5395
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boundary of possible ‘intrinsic’ velocity trends, no upper boundary
can be inferred from the data and used to check plausibility of this
observation. However, some fabric characteristics indicate that the
velocity gap at Pmax is realistic. The Z direction of both samples
is perpendicular to the predominant foliation, which generally rep-
resents the most prominent anisotropy plane of rocks. Anisotropic
pore space distributions with the highest anisotropy parallel to the
foliation normal were observed (Ullemeyer et al. 2006), leading to
more pronounced velocity decrease with decreasing pressure com-
pared to the other sample directions.

Eqs (3a)/(3b) constrain the ‘intrinsic’ function to fit the exper-
imental function at pressures P > Pc. Particular critical pressures
Pc of 365/494 MPa for the amphibolite sample and 383/471 MPa
for the gneiss sample are known to be too low, that is, for P >

Pc the experimental function is essentially non-linear and the ‘true
intrinsic’ function locates above the modelled one. The ‘intrinsic’
pressure derivative e3 is expected to be smaller and the zero pres-
sure velocity d3 to be higher. Since, always, e3 is less than b2 and d3

exceeds a2 (Table 4, Fig. 5), particular trends are closer to the ‘true
intrinsic’ velocity trend. From this point of view eqs (3a)/(3b) are
superior to eq. (2). On the other hand, dependent on Pc, the linear
fits are based on few experimental data covering a small pressure
interval only (see Fig. 5). Hence, statistical relevance of the correla-
tion coefficient r2, which is the criterion for linearity of the velocity
trend, is poor. Despite rather small experimental errors of about
60 × 10−3 km s−1 (Table 3), reliability of the ‘intrinsic’ function
becomes worse the higher the critical pressure Pc.

6 C O N C LU S I O N S

We conclude that all relations for the approximation of
velocity–pressure trends discussed above are unsuitable for doubt-
less prediction of the ‘intrinsic’ velocity–pressure trends from
low-pressure experiments. This holds true despite the observation
that some relations describe most velocity–pressure trends suffi-
ciently well within the measuring range. The relation proposed by
Pros et al. (1998) fails in describing the non-linear part of the
velocity–pressure equation with sufficient accuracy, which finds its
expression in the obviously unrealistic intersection of the ‘intrin-
sic’ velocity trend with the experimental data. Such intersection
was observed for all measurements we ever tried to approximate by
means of eq. (2), for this reason, we cannot recommend use of this
approach for the evaluation of the ‘intrinsic’ velocity trend.

Due to the assumption that the ‘crack closure pressure’ is lower
than maximum pressure in the experiment, the approach of Wang
et al. (2005) avoids intersection of the model functions and the
experimental functions. The approach is, therefore, superior to the
approach of Pros et al. (1998). However, the true ‘crack closure
pressure’ is clearly located beyond the maximum pressures sampled.
It may be assumed that the approach leads to increasingly better
results the smaller the critical pressure Pc estimated by means of
eqs (3a)/(3b), on the other hand, there is no independent criterion to
decide whether the predicted ‘intrinsic’ velocity trends are within
acceptable errors or not.

Since limiting constraints concerning the ‘crack closure pressure’
are avoided, and due to the fact that unrealistic intersection of the
‘intrinsic’ function and the experimental function can be prevented,
our refinement procedure clearly offers a better approximation of
the ‘true intrinsic’ function as both the other approaches do. Indeed,
uncertainty about obtained trends persists, as the positive proof
cannot be provided due to lacking experiments to sufficiently high
pressures. In addition to the examples presented, the procedure was

applied to a large number of cube sample measurements. Conver-
gence of eq. (4) was observed in all cases, however, the error level
assigned to the approximated point of convergence was frequently
inacceptable. In summary, we conclude that our approach offers an
approvement of already existing approaches, provided that the er-
rors are evaluated carefully and obtained ‘intrinsic’ velocity trends
are judged critically because of missing experimental verification.
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