75 research outputs found

    Futibatinib, an irreversible FGFR1-4 inhibitor, in patients with advanced solid tumors harboring FGF/FGFR aberrations: a phase I dose-expansion study

    Get PDF
    Futibatinib, a highly selective, irreversible FGFR1-4 inhibitor, was evaluated in a large multihistology phase I dose-expansion trial that enrolled 197 patients with advanced solid tumors. Futibatinib demonstrated an objective response rate (ORR) of 13.7%, with responses in a broad spectrum of tumors (cholangiocarcinoma and gastric, urothelial, central nervous system, head and neck, and breast cancer) bearing both known and previously uncharacterized FGFR1-3 aberrations. The greatest activity was observed in FGFR2 fusion/rearrangement-positive intrahepatic cholangiocarcinoma (ORR, 25.4%). Some patients with acquired resistance to a prior FGFR inhibitor also experienced responses with futibatinib. Futibatinib demonstrated a manageable safety profile. The most common treatment-emergent adverse events were hyperphosphatemia (81.2%), diarrhea (33.5%), and nausea (30.4%). These results formed the basis for ongoing futibatinib phase II/III trials and demonstrate the potential of genomically selected early-phase trials to help identify molecular subsets likely to benefit from targeted therapy

    The Werner Syndrome Protein Suppresses Telomeric Instability Caused by Chromium (VI) Induced DNA Replication Stress

    Get PDF
    Telomeres protect the chromosome ends and consist of guanine-rich repeats coated by specialized proteins. Critically short telomeres are associated with disease, aging and cancer. Defects in telomere replication can lead to telomere loss, which can be prevented by telomerase-mediated telomere elongation or activities of the Werner syndrome helicase/exonuclease protein (WRN). Both telomerase and WRN attenuate cytotoxicity induced by the environmental carcinogen hexavalent chromium (Cr(VI)), which promotes replication stress and DNA polymerase arrest. However, it is not known whether Cr(VI)-induced replication stress impacts telomere integrity. Here we report that Cr(VI) exposure of human fibroblasts induced telomeric damage as indicated by phosphorylated H2AX (γH2AX) at telomeric foci. The induced γH2AX foci occurred in S-phase cells, which is indicative of replication fork stalling or collapse. Telomere fluorescence in situ hybridization (FISH) of metaphase chromosomes revealed that Cr(VI) exposure induced an increase in telomere loss and sister chromatid fusions that were rescued by telomerase activity. Human cells depleted for WRN protein exhibited a delayed reduction in telomeric and non-telomeric damage, indicated by γH2AX foci, during recovery from Cr(VI) exposure, consistent with WRN roles in repairing damaged replication forks. Telomere FISH of chromosome spreads revealed that WRN protects against Cr(VI)-induced telomere loss and downstream chromosome fusions, but does not prevent chromosome fusions that retain telomere sequence at the fusion point. Our studies indicate that environmentally induced replication stress leads to telomere loss and aberrations that are suppressed by telomerase-mediated telomere elongation or WRN functions in replication fork restoration

    Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron

    Get PDF
    The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning
    corecore