153 research outputs found

    Plant cell division is specifically affected by nitrotyrosine

    Get PDF
    Virtually all eukaryotic α-tubulins harbour a C-terminal tyrosine that can be reversibly removed and religated, catalysed by a specific tubulin–tyrosine carboxypeptidase (TTC) and a specific tubulin–tyrosine ligase (TTL), respectively. The biological function of this post-translational modification has remained enigmatic. 3-nitro-L-tyrosine (nitrotyrosine, NO2Tyr), can be incorporated into detyrosinated α-tubulin instead of tyrosine, producing irreversibly nitrotyrosinated α-tubulin. To gain insight into the possible function of detyrosination, the effect of NO2Tyr has been assessed in two plant model organisms (rice and tobacco). NO2Tyr causes a specific, sensitive, and dose-dependent inhibition of cell division that becomes detectable from 1 h after treatment and which is not observed with non-nitrosylated tyrosine. These effects are most pronounced in cycling tobacco BY-2 cells, where the inhibition of cell division is accompanied by a stimulation of cell length, and a misorientation of cross walls. NO2Tyr reduces the abundance of the detyrosinated form of α-tubulin whereas the tyrosinated α-tubulin is not affected. These findings are discussed with respect to a model where NO2Tyr is accepted as substrate by TTL and subsequently blocks TTC activity. The irreversibly tyrosinated α-tubulin impairs microtubular functions that are relevant to cell division in general, and cell wall deposition in particular

    Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium

    Get PDF
    Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model.Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density.Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium

    Morphological and molecular analysis of natural hybrids between the diploid Centaurea aspera L. and the tetraploid C. seridis L. (Compositae)

    Full text link
    [EN] Polyploidy and hybridisation are the basis of the evolution of Centaurea (Compositae). At the El Saler dune field (eastern Spain), the diploid Centaurea aspera ssp. stenophylla and the tetraploid C. seridis ssp. maritima form a polyploid complex in which C. x subdecurrens individuals occur. This polyploid complex was analysed morphologically and genetically, using random amplified polymorphic DNA (RAPD) and tubulin-based polymorphism (TBP) markers. Flow cytometry showed that the hybrids are triploid, which is a rare finding in Centaurea. Morphologically, in contrast to leaf characters, flowering characters clearly discriminated the three taxa. The genetic analyses confirm that C. x subdecurrens is a result of the hybridisation between Centaurea aspera ssp. stenophylla and C. seridis ssp. maritima, and suggest that backcrossing events and gene flow are very rare or absent. Although the hybrids likely represent true F1 offspring, they displayed some genetic diversity that is probably due to the combination of alleles. Genetic diversity was higher in diploid than in tetraploid individuals. This fact, and the high degree of sterility of the triploid hybrids, may reflect a cytotype minority exclusion effect. This may cause spatial segregation, which effectively takes place in the study area. Dune disturbance may lead to an overlapping of the parents' distribution areas, facilitating hybridisation.This work is posthumously dedicated to Antonio Samo Lumbreras, to whom we are very grateful for all his help. This study was sponsored by the Valencian Government (Research Project GVPRE/2008/130) and the Universitat Politecnica de Valencia (Research Project Ref. 3241).Ferriol Molina, M.; Garmendia, A.; Ruiz, J.; Merle FarinĂłs, HB.; Boira Tortajada, H. (2012). Morphological and molecular analysis of natural hybrids between the diploid Centaurea aspera L. and the tetraploid C. seridis L. (Compositae). Plant Biosystems. 146(1):86-100. https://doi.org/10.1080/11263504.2012.727878S86100146

    Cigarette smoke induces PTX3 expression in pulmonary veins of mice in an IL-1 dependent manner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammatory responses and structural alterations of the airways, lung parenchyma and pulmonary vasculature. Since Pentraxin-3 (PTX3) is a tuner of inflammatory responses and is produced by endothelial and inflammatory cells upon stimuli such as interleukin-1ÎČ (IL-1ÎČ), we hypothesized that PTX3 is involved in COPD pathogenesis.</p> <p>Methods and Results</p> <p>We evaluated whether cigarette smoke (CS) triggers pulmonary and systemic PTX3 expression <it>in vivo </it>in a murine model of COPD. Using immunohistochemical (IHC) staining, we observed PTX3 expression in endothelial cells of lung venules and veins but not in lung arteries, airways and parenchyma. Moreover, ELISA on lung homogenates and semi-quantitative scoring of IHC-stained sections revealed a significant upregulation of PTX3 upon subacute and chronic CS exposure. Interestingly, PTX3 expression was not enhanced upon subacute CS exposure in IL-1RI KO mice, suggesting that the IL-1 pathway is implicated in CS-induced expression of vascular PTX3. Serum PTX3 levels increased rapidly but transiently after acute CS exposure.</p> <p>To elucidate the functional role of PTX3 in CS-induced responses, we examined pulmonary inflammation, protease/antiprotease balance, emphysema and body weight changes in WT and Ptx3 KO mice. CS-induced pulmonary inflammation, peribronchial lymphoid aggregates, increase in MMP-12/TIMP-1 mRNA ratio, emphysema and failure to gain weight were not significantly different in Ptx3 KO mice compared to WT mice. In addition, Ptx3 deficiency did not affect the CS-induced alterations in the pulmonary (mRNA and protein) expression of VEGF-A and FGF-2, which are crucial regulators of angiogenesis.</p> <p>Conclusions</p> <p>CS increases pulmonary PTX3 expression in an IL-1 dependent manner. However, our results suggest that either PTX3 is not critical in CS-induced pulmonary inflammation, emphysema and body weight changes, or that its role can be fulfilled by other mediators with overlapping activities.</p

    Pentraxin 3 (PTX3) Expression in Allergic Asthmatic Airways: Role in Airway Smooth Muscle Migration and Chemokine Production

    Get PDF
    Pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma.We sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC). In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using (3)H-thymidine incorporation, cell count and Boyden chamber assays.PTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1ÎČ but not by Th2 (IL-4, IL-9, IL-13), Th1 (IFN-Îł), or Th-17 (IL-17) cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC). Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2)-driven HASMC chemotactic activity.Our data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma

    Human Pentraxin 3 Binds to the Complement Regulator C4b-Binding Protein

    Get PDF
    The long pentraxin 3 (PTX3) is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP). A PTX3-binding site was identified within short consensus repeats 1–3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage

    Incorporation of Pentraxin 3 into Hyaluronan Matrices Is Tightly Regulated and Promotes Matrix Cross-linking

    Get PDF
    Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking

    Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, <it>i.e. de novo </it>DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages.</p> <p>Results</p> <p>Native lipoprotein-induced <it>de novo </it>DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as <it>de novo </it>DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway.</p> <p>Conclusions</p> <p>Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a <it>de novo </it>DNA methyltransferase independently of canonical <it>de novo </it>enzymes, and show proof of principle that <it>de novo </it>DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.</p

    The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR): it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known.</p> <p>Results</p> <p>Here, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus <it>Trichoderma reesei </it>(anamorph of <it>Hypocrea jecorina</it>) by profiling transcription in a wild-type and a delta-<it>cre1 </it>mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes.</p> <p>Conclusions</p> <p>Our study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment.</p

    Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.

    Get PDF
    Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1ÎČ and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities
    • 

    corecore