36 research outputs found

    A Multispecialty Evaluation of Thiel Cadavers for Surgical Training

    Get PDF
    Background: Changes in UK legislation allow for surgical procedures to be performed on cadavers. The aim of this study was to assess Thiel cadavers as high-fidelity simulators and to examine their suitability for surgical training. Methods: Surgeons from various specialties were invited to attend a 1 day dissection workshop using Thiel cadavers. The surgeons completed a baseline questionnaire on cadaveric simulation. At the end of the workshop, they completed a similar questionnaire based on their experience with Thiel cadavers. Comparing the answers in the pre- and post-workshop questionnaires assessed whether using Thiel cadavers had changed the surgeons’ opinions of cadaveric simulation. Results: According to the 27 participants, simulation is important for surgical training and a full-procedure model is beneficial for all levels of training. Currently, there is dissatisfaction with existing models and a need for high-fidelity alternatives. After the workshop, surgeons concluded that Thiel cadavers are suitable for surgical simulation (p = 0.015). Thiel were found to be realistic (p < 0.001) to have reduced odour (p = 0.002) and be more cost-effective (p = 0.003). Ethical constraints were considered to be small. Conclusion: Thiel cadavers are suitable for training in most surgical specialties

    PaCTS 1.0: a crowdsourced reporting standard for paleoclimate data

    Get PDF
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate datasets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new vs. legacy datasets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate datasets. Since such goals are at odds with present practices, we discuss a transparent path towards implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches

    Nest-mark orientation versus vector navigation in desert ants

    Full text link
    Foraging ants and bees use path-integration vectors and landmark cues for navigation. When in particular experimental paradigms the two types of information – vector-based and landmark-based information – are made to compete with each other, the insect may weight either source more heavily depending on the navigational context and the animal's motivational state. Here we studied the effects of a displaced nest mark on the homing performances of Cataglyphis ants. Foragers were trained to shuttle between the nest, which was marked by a black cylinder (the beacon), and an artificial feeder. Trained ants were captured at the feeder and transferred to a distant test field, where they experienced the nest mark at various positions relative to their home vector. When the beacon was positioned to one side of the point of release, the ants slightly drifted towards the beacon right at the start of their inbound run, but thereafter resumed their home-vector courses. When the nest mark appeared to one side further down the homing course, the ants set off in the home-vector direction, but then gradually drifted towards the beacon. The distance, at which this occurred, and the ants' drift from the home-vector course were very similar across test conditions. During the final search for the nest, landmark information dominated the ants' path integrator. The results clearly show that nest-mark memories are effective during the entire vector-based homeward course, but that they are either only partly activated or partly used unless the state of the ants' path integrator is close to zero

    Cyclic nucleotide signalling in the kinetoplastids

    No full text

    Solder doped polycaprolactone scaffold enables reproducible laser tissue soldering

    No full text
    BACKGROUND AND OBJECTIVES: In this in vitro feasibility study we analyzed tissue fusion using bovine serum albumin (BSA) and Indocyanine green (ICG) doped polycaprolactone (PCL) scaffolds in combination with a diode laser as energy source while focusing on the influence of irradiation power and albumin concentration on the resulting tensile strength and induced tissue damage. MATERIALS AND METHODS: A porous PCL scaffold doped with either 25% or 40% (w/w) of BSA in combination with 0.1% (w/w) ICG was used to fuse rabbit aortas. Soldering energy was delivered through the vessel from the endoluminal side using a continuous wave diode laser at 808 nm via a 400 microm core fiber. Scaffold surface temperatures were analyzed with an infrared camera. Optimum parameters such as irradiation time, radiation power and temperature were determined in view of maximum tensile strength but simultaneously minimum thermally induced tissue damage. Differential scanning calorimetry (DSC) was performed to measure the influence of PCL on the denaturation temperature of BSA. RESULTS: Optimum parameter settings were found to be 60 seconds irradiation time and 1.5 W irradiation power resulting in tensile strengths of around 2,000 mN. Corresponding scaffold surface temperature was 117.4+/- 12 degrees C. Comparison of the two BSA concentration revealed that 40% BSA scaffold resulted in significant higher tensile strength compared to the 25%. At optimum parameter settings, thermal damage was restricted to the adventitia and its interface with the outermost layer of the tunica media. The DSC showed two endothermic peaks in BSA containing samples, both strongly depending on the water content and the presence of PCL and/or ICG. CONCLUSIONS: Diode laser soldering of vascular tissue using BSA-ICG-PCL-scaffolds leads to strong and reproducible tissue bonds, with vessel damage limited to the adventitia. Higher BSA content results in higher tensile strengths. The DSC-measurements showed that BSA denaturation temperature is lowered by addition of water and/or ICG-PCL
    corecore