44 research outputs found

    An evaluation of age estimation using teeth from South Asian River dolphins (Platanistidae)

    Get PDF
    Funding: Financial support was from the Whale and Dolphin Conservation Society and the US Marine Mammal Commission.The South Asian river dolphins (Platanista gangetica minor and P. g. gangetica) are endangered, geographically isolated, freshwater cetaceans. Accurate age estimation of individuals is an important aspect of population biology as it is used for calculating parameters such as age at maturity and reproduction, longevity, and growth and survival rates. However this has never been comprehensively studied for this endangered cetacean family. A sample of 41 teeth from 29 skulls stored in museum collections was available. We compared two different aging methods to select the most appropriate. This involved decalcification and freeze-sectioning of teeth at variable thicknesses (10–25 micron), and staining with 1) Toluidine Blue, or 2) Ehrlichs Acid Haematoxylin. Stains were then compared for readability of Growth Layer Groups (GLG). The optimum section was found at 20 micron using Erhlichs Acid Haematoxylin. Both dentinal and cemental GLG were readable and comparable, but cemental GLG were generally easier to interpret because they were better defined. Ages varied from newborn / young of year (with none or only a neonatal line present) to a maximum age of 30 GLG. There is currently no validation available for GLG deposition rate, but it is likely annual because of the extreme seasonal changes in the river habitat.Publisher PDFPeer reviewe

    Abundance, spatial distribution and threats to Indo-Pacific bottlenose dolphins (Tursiops aduncus) in an Important Marine Mammal Area in Tanzania

    Get PDF
    Funding: Thanks to the US Marine Mammal Commission (MMC) and the People’s Trust for Endangered Species who funded his work via the Wildlife Conservation Society (WCS).Abundance estimates of cetaceans in the western Indian Ocean are rare, but important, as many cetacean populations are under threat, especially those in coastal habitats. This study aimed to generate first estimates of abundance for Indo-Pacific bottlenose dolphins (Tursiops aduncus), assessed as Near Threatened on the IUCN Red List, in an area identified by the Marine Mammal Protected Area Task Force as an ‘Important Marine Mammal Area’. Two study sites were surveyed along the east and west coastlines of the Pemba Channel, Tanzania. In west Pemba, between 2014 and 2016 four boat-based visual surveys conducted a total of 2467 km of survey effort sighting a total of 16 groups of T. aduncus. Abundance was estimated using mark-recapture models of photo-identified individuals as 83 animals (CV 7.8%, 95% CI 72-97) in the 1084km2 study area. In the Tanga study area in 2016 two boat-based visual surveys covered 1254 km of effort during which 15 groups of T. aduncus were sighted, resulting in a photo-ID based mark-recapture abundance estimate of 196 (CV 8.9%, 95% CI 165-233) individuals in the 1562 km2 study site. Group encounter rate for this species in Tanga was double that recorded in the Pemba study site. A total of 23% of identified dolphins bore the scars of interactions with fishing gear.Publisher PDFPeer reviewe

    Exploring trade-offs between SDGs for Indus River Dolphin conservation and human water security in the regulated Beas River, India

    Get PDF
    This work was supported by the Global Challenges Research Fund through quality-related funding (QR GCRF) and the UK Natural Environment Research Council (Grant number NE/N015541/1). J. Krishnaswamy acknowledges support from the Climate Change and Disaster Risk Mitigation component of the National Mission on Biodiversity and Human Well-being supported by the Office of the Principal Scientific Adviser to the Government of India and Google Research (Google Grant for AI on Social Good).In India’s Indo-Gangetic plains, river flows are strongly altered by dams, barrages and water diversions for irrigation, urban supply, hydropower production and flood control. Human demands for freshwater are likely to intensify with climatic and socio-economic changes, exacerbating trade-offs between different sustainable development goals (SDGs) dependent on freshwater (e.g. SDG2, SDG6, SDG7, SDG11 and SDG15). Freshwater ecosystems and endangered aquatic species are not explicitly addressed in the SDGs, but only nested as targets within SDG6 and SDG15. Thus, there is high risk that decisions to advance other SDGs may overlook impacts on them. In this study, we link a water resource systems model and a forecast extinction risk model to analyze how alternative conservation strategies in the regulated Beas River (India) affect the likelihood of survival of the only remaining population of endangered Indus River Dolphins (IRD) in India in the face of climate change-induced impacts on river hydrology and human water demands, explicitly accounting for potential trade-offs between related SDGs. We find that the frequency of low flow released from the main reservoir may increase under some climate change scenarios, significantly affecting the IRD population. The strongest trade-offs exist between the persistence of IRD, urban water supply and hydropower generation. The establishment of ecologically informed reservoir releases combined with IRD population supplementation enhances the probability of survival of the IRD and is compatible with improving the status of relevant SDGs. This will require water managers, conservation scientists, and other stakeholders to continue collaborating to develop holistic water management strategies.Publisher PDFPeer reviewe

    The Important Marine Mammal Area network : a tool for systematic spatial planning in response to the marine mammal habitat conservation crisis

    Get PDF
    Major support to the IMMA process was provided by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) on the basis of a decision adopted by the German Bundestag, through the Global Ocean Biodiversity Initiative (GOBI). Funding was also provided by the MAVA Foundation and by the French Biodiversity Agency (OFB) in cooperation with IUCN’s Global Marine and Polar Program. The support from the Prince Albert II of Monaco Foundation, OceanCare, NRDC, the Animal Welfare Institute, and the Pacific Life Foundation is also gratefully acknowledged.The Important Marine Mammal Areas (IMMAs) initiative was launched by the Marine Mammal Protected Areas Task Force of the International Union for the Conservation of Nature in 2016, as a response to a conservation crisis in the protection of marine mammals and wider global ocean biodiversity. IMMAs identify discrete portions of habitat that are important for one or more marine mammal species, and that have the potential to be delineated and managed for conservation. They are identified by scientific experts during regional workshops, on the basis of satisfying one or more of eight criteria that capture critical aspects of marine mammal biology, ecology and population structure. Candidate IMMAs undergo independent scientific review prior to being accepted, and then are publicly available via a searchable and downloadable database and a dedicated online e-Atlas. Between 2016 and 2021, eight expert workshops - engaging more than 300 experts - have resulted in the identification of 173 IMMAs located in 90 countries or territories, across a third of the globe. IMMAs identified to date provide important habitats for 58 of the 131 recognized marine mammal species. Around two-thirds of all IMMAs (65%) were identified on the basis of important habitat for a marine mammal species that is threatened on the IUCN Red List. Approximately 61% of IMMA surface areas occur within Exclusive Economic Zone waters, while 39% fall within areas beyond national jurisdiction. The Task Force undertook implementation planning exercises for IMMAs in Palau (Micronesia), the Andaman Islands (India) and the Bazaruto Archipelago and Inhambane Bay (Mozambique), engaging with a range of stakeholders including government and management bodies. IMMAs are increasingly being utilized in environmental impact assessments, marine planning exercises and in international, national and supra-regional conservation, policy and management initiatives, including the Convention on Migratory Species and Convention on Biological Diversity, as well as the design and management of Marine Protected Areas (MPAs) and the extension of MPA networks. The Task Force is working toward completing a global network of IMMAs that will contribute the scientific information needed to fulfill the current collective goal of protecting 30% of the ocean by 2030.Publisher PDFPeer reviewe

    Red-list status and extinction risk of the world’s whales, dolphins and porpoises

    Get PDF
    To understand the scope and scale of the loss of biodiversity, tools are required that can be applied in a standardized manner to all species globally, spanning realms from land to the open ocean. We used data from the International Union for the Conservation of Nature Red List to provide a synthesis of the conservation status and extinction risk of cetaceans. One in 4 cetacean species (26% of 92 species) was threatened with extinction (i.e., critically endangered, endangered, or vulnerable) and 11% were near threatened. Ten percent of cetacean species were data deficient, and we predicted that 2–3 of these species may also be threatened. The proportion of threatened cetaceans has increased: 15% in 1991, 19% in 2008, and 26% in 2021. The assessed conservation status of 20% of species has worsened from 2008 to 2021, and only 3 moved into categories of lesser threat. Cetacean species with small geographic ranges were more likely to be listed as threatened than those with large ranges, and those that occur in freshwater (100% of species) and coastal (60% of species) habitats were under the greatest threat. Analysis of odontocete species distributions revealed a global hotspot of threatened small cetaceans in Southeast Asia, in an area encompassing the Coral Triangle and extending through nearshore waters of the Bay of Bengal, northern Australia, and Papua New Guinea and into the coastal waters of China. Improved management of fisheries to limit overfishing and reduce bycatch is urgently needed to avoid extinctions or further declines, especially in coastal areas of Asia, Africa, and South America.Publisher PDFPeer reviewe

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Fil: Marsh, Charles J.. Yale University; Estados UnidosFil: Sica, Yanina. Yale University; Estados UnidosFil: Burguin, Connor. University of New Mexico; Estados UnidosFil: Dorman, Wendy A.. University of Yale; Estados UnidosFil: Anderson, Robert C.. University of Yale; Estados UnidosFil: del Toro Mijares, Isabel. University of Yale; Estados UnidosFil: Vigneron, Jessica G.. University of Yale; Estados UnidosFil: Barve, Vijay. University Of Florida. Florida Museum Of History; Estados UnidosFil: Dombrowik, Victoria L.. University of Yale; Estados UnidosFil: Duong, Michelle. University of Yale; Estados UnidosFil: Guralnick, Robert. University Of Florida. Florida Museum Of History; Estados UnidosFil: Hart, Julie A.. University of Yale; Estados UnidosFil: Maypole, J. Krish. University of Yale; Estados UnidosFil: McCall, Kira. University of Yale; Estados UnidosFil: Ranipeta, Ajay. University of Yale; Estados UnidosFil: Schuerkmann, Anna. University of Yale; Estados UnidosFil: Torselli, Michael A.. University of Yale; Estados UnidosFil: Lacher, Thomas. Texas A&M University; Estados UnidosFil: Wilson, Don E.. National Museum of Natural History; Estados UnidosFil: Abba, Agustin Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Centro de Estudios ParasitolĂłgicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios ParasitolĂłgicos y de Vectores; ArgentinaFil: Aguirre, Luis F.. Universidad Mayor de San SimĂłn; BoliviaFil: Arroyo Cabrales, JoaquĂ­n. Instituto Nacional de AntropologĂ­a E Historia, Mexico; MĂ©xicoFil: AstĂșa, Diego. Universidade Federal de Pernambuco; BrasilFil: Baker, Andrew M.. Queensland University of Technology; Australia. Queensland Museum; AustraliaFil: Braulik, Gill. University of St. Andrews; Reino UnidoFil: Braun, Janet K.. Oklahoma State University; Estados UnidosFil: Brito, Jorge. Instituto Nacional de Biodiversidad; EcuadorFil: Busher, Peter E.. Boston University; Estados UnidosFil: Burneo, Santiago F.. Pontificia Universidad CatĂłlica del Ecuador; EcuadorFil: Camacho, M. Alejandra. Pontificia Universidad CatĂłlica del Ecuador; EcuadorFil: de Almeida Chiquito, Elisandra. Universidade Federal do EspĂ­rito Santo; BrasilFil: Cook, Joseph A.. University of New Mexico; Estados UnidosFil: CuĂ©llar Soto, Erika. Sultan Qaboos University; OmĂĄnFil: Davenport, Tim R. B.. Wildlife Conservation Society; TanzaniaFil: Denys, Christiane. MusĂ©um National d'Histoire Naturelle; FranciaFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Eldridge, Mark D. B.. Australian Museum; AustraliaFil: Fernandez Duque, Eduardo. University of Yale; Estados UnidosFil: Francis, Charles M.. Environment And Climate Change Canada; CanadĂĄFil: Frankham, Greta. Australian Museum; AustraliaFil: Freitas, Thales. Universidade Federal do Rio Grande do Sul; BrasilFil: Friend, J. Anthony. Conservation And Attractions; AustraliaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico - TucumĂĄn. Unidad Ejecutora Lillo; ArgentinaFil: Gursky-Doyen, Sharon. Texas A&M University; Estados UnidosFil: HacklĂ€nder, Klaus. Universitat Fur Bodenkultur Wien; AustriaFil: Hawkins, Melissa. National Museum of Natural History; Estados UnidosFil: Helgen, Kristofer M.. Australian Museum; AustraliaFil: Heritage, Steven. University of Duke; Estados UnidosFil: Hinckley, Arlo. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Holden, Mary. American Museum of Natural History; Estados UnidosFil: Holekamp, Kay E.. Michigan State University; Estados UnidosFil: Humle, Tatyana. University Of Kent; Reino UnidoFil: Ibåñez Ulargui, Carlos. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Jackson, Stephen M.. Australian Museum; AustraliaFil: Janecka, Mary. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Jenkins, Paula. Natural History Museum; Reino UnidoFil: Juste, Javier. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Leite, Yuri L. R.. Universidade Federal do EspĂ­rito Santo; BrasilFil: Novaes, Roberto Leonan M.. Universidade Federal do Rio de Janeiro; BrasilFil: Lim, Burton K.. Royal Ontario Museum; CanadĂĄFil: Maisels, Fiona G.. Wildlife Conservation Society; Estados UnidosFil: Mares, Michael A.. Oklahoma State University; Estados UnidosFil: Marsh, Helene. James Cook University; AustraliaFil: Mattioli, Stefano. UniversitĂ  degli Studi di Siena; ItaliaFil: Morton, F. Blake. University of Hull; Reino UnidoFil: Ojeda, Agustina Alejandra. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Ordóñez Garza, NictĂ©. Instituto Nacional de Biodiversidad; EcuadorFil: Pardiñas, Ulises Francisco J.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto de Diversidad y EvoluciĂłn Austral; ArgentinaFil: Pavan, Mariana. Universidade de Sao Paulo; BrasilFil: Riley, Erin P.. San Diego State University; Estados UnidosFil: Rubenstein, Daniel I.. University of Princeton; Estados UnidosFil: Ruelas, Dennisse. Museo de Historia Natural, Lima; PerĂșFil: Schai-Braun, StĂ©phanie. Universitat Fur Bodenkultur Wien; AustriaFil: Schank, Cody J.. University of Texas at Austin; Estados UnidosFil: Shenbrot, Georgy. Ben Gurion University of the Negev; IsraelFil: Solari, Sergio. Universidad de Antioquia; ColombiaFil: Superina, Mariella. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂ­a Experimental de Cuyo; ArgentinaFil: Tsang, Susan. American Museum of Natural History; Estados UnidosFil: Van Cakenberghe, Victor. Universiteit Antwerp; BĂ©lgicaFil: Veron, Geraldine. UniversitĂ© Pierre et Marie Curie; FranciaFil: Wallis, Janette. Kasokwa-kityedo Forest Project; UgandaFil: Whittaker, Danielle. Michigan State University; Estados UnidosFil: Wells, Rod. Flinders University.; AustraliaFil: Wittemyer, George. State University of Colorado - Fort Collins; Estados UnidosFil: Woinarski, John. Charles Darwin University; AustraliaFil: Upham, Nathan S.. University of Yale; Estados UnidosFil: Jetz, Walter. University of Yale; Estados Unido

    Managing the Effects of Noise From Ship Traffic, Seismic Surveying and Construction on Marine Mammals in Antarctica

    Get PDF
    © 2019 Erbe, DĂ€hne, Gordon, Herata, Houser, Koschinski, Leaper, McCauley, Miller, MĂŒller, Murray, Oswald, Scholik-Schlomer, Schuster, Van Opzeeland and Janik. The Protocol on Environmental Protection of the Antarctic Treaty stipulates that the protection of the Antarctic environment and associated ecosystems be fundamentally considered in the planning and conducting of all activities in the Antarctic Treaty area. One of the key pollutants created by human activities in the Antarctic is noise, which is primarily caused by ship traffic (from tourism, fisheries, and research), but also by geophysical research (e.g., seismic surveys) and by research station support activities (including construction). Arguably, amongst the species most vulnerable to noise are marine mammals since they specialize in using sound for communication, navigation and foraging, and therefore have evolved the highest auditory sensitivity among marine organisms. Reported effects of noise on marine mammals in lower-latitude oceans include stress, behavioral changes such as avoidance, auditory masking, hearing threshold shifts, and—in extreme cases—death. Eight mysticete species, 10 odontocete species, and six pinniped species occur south of 60°S (i.e., in the Southern or Antarctic Ocean). For many of these, the Southern Ocean is a key area for foraging and reproduction. Yet, little is known about how these species are affected by noise. We review the current prevalence of anthropogenic noise and the distribution of marine mammals in the Southern Ocean, and the current research gaps that prevent us from accurately assessing noise impacts on Antarctic marine mammals. A questionnaire given to 29 international experts on marine mammals revealed a variety of research needs. Those that received the highest rankings were (1) improved data on abundance and distribution of Antarctic marine mammals, (2) hearing data for Antarctic marine mammals, in particular a mysticete audiogram, and (3) an assessment of the effectiveness of various noise mitigation options. The management need with the highest score was a refinement of noise exposure criteria. Environmental evaluations are a requirement before conducting activities in the Antarctic. Because of a lack of scientific data on impacts, requirements and noise thresholds often vary between countries that conduct these evaluations, leading to different standards across countries. Addressing the identified research needs will help to implement informed and reasonable thresholds for noise production in the Antarctic and help to protect the Antarctic environment

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    An evaluation of age estimation using teeth from South Asian River dolphins (<i>Platanistidae</i>)

    Get PDF
    The South Asian river dolphins (Platanista gangetica minor and P. g. gangetica) are endangered, geographically isolated, freshwater cetaceans. Accurate age estimation of individuals is an important aspect of population biology as it is used for calculating parameters such as age at maturity and reproduction, longevity, and growth and survival rates. However this has never been comprehensively studied for this endangered cetacean family. A sample of 41 teeth from 29 skulls stored in museum collections was available. We compared two different aging methods to select the most appropriate. This involved decalcification and freeze-sectioning of teeth at variable thicknesses (10–25 micron), and staining with 1) Toluidine Blue, or 2) Ehrlichs Acid Haematoxylin. Stains were then compared for readability of Growth Layer Groups (GLG). The optimum section was found at 20 micron using Erhlichs Acid Haematoxylin. Both dentinal and cemental GLG were readable and comparable, but cemental GLG were generally easier to interpret because they were better defined. Ages varied from newborn / young of year (with none or only a neonatal line present) to a maximum age of 30 GLG. There is currently no validation available for GLG deposition rate, but it is likely annual because of the extreme seasonal changes in the river habitat
    corecore