5 research outputs found

    A Macroprudential Perspective on the Regulatory Boundaries of US Financial Assets

    Get PDF
    This paper uses data from the Financial Accounts of the United States to map out the regulatory boundaries of assets held by US financial institutions from a macroprudential perspective. We provide a quantitative measure of the macroprudential regulatory boundary—the perimeter between the part of the financial sector that is subject to some form of macroprudential regulatory oversight and that which is not—and show how it has evolved over the past 40 years. Additionally, we measure the boundaries between different regulatory agencies and financial institutions that operate within the regulatory perimeter and illustrate how these boundaries potentially become blurred in the face of regulatory overlap. Quantifying the macroprudential regulatory boundary and the boundaries for different regulators within the perimeter is informative for assessing financial stability risks over the credit cycle

    Ungulate herbivory modifies the effects of climate change on mountain forests

    Get PDF
    Recent temperature observations suggest a general warming trend that may be causing the range of tree species to shift to higher latitudes and altitudes. Since biotic interactions such as herbivory can change tree species composition, it is important to understand their contribution to vegetation changes triggered by climate change. To investigate the response of forests to climate change and herbivory by wild ungulates, we used the forest gap model ForClim v2.9.6 and simulated forest development in three climatically different valleys in the Swiss Alps. We used altitudinal transects on contrasting slopes covering a wide range of forest types from the cold (upper) to the dry (lower) treeline. This allowed us to investigate (1) altitudinal range shifts in response to climate change, (2) the consequences for tree species composition, and (3) the combined effect of climate change and ungulate herbivory. We found that ungulate herbivory changed species composition and that both basal area and stem numbers decreased with increasing herbivory intensity. Tree species responded differently to the change in climate, and their ranges did not change concurrently, thus causing a succession to new stand types. While climate change partially compensated for the reductions in basal area caused by ungulate herbivory, the combined effect of these two agents on the mix of the dominant species and forest type was non-compensatory, as browsing selectively excluded species from establishing or reaching dominance and altered competition patterns, particularly for light. We conclude that there is an urgent need for adaptive forest management strategies that address the joint effects of climate change and ungulate herbivory

    Linking forest growth with stand structure: Tree size inequality, tree growth or resource partitioning and the asymmetry of competition

    No full text
    corecore