20 research outputs found

    A Comprehensible Review: Magnonic Magnetoelectric Coupling in Ferroelectric/ Ferromagnetic Composites

    Full text link
    Composite materials consisting of coupled magnetic and ferroelectric layers hold the promise for new emergent properties such as controlling magnetism with electric fields. Obviously, the interfacial coupling mechanism plays a crucial role and its understanding is the key for exploiting this material class for technological applications. This short review is focused on the magnonic-based magnetoelectric coupling that forms at the interface of a metallic ferromagnet with a ferroelectric insulator. After analyzing the physics behind this coupling, the implication for the magnetic, transport, and optical properties of these composite materials is discussed. Furthermore, examples for the functionality of such interfaces are illustrated by the electric field controlled transport through ferroelectric/ferromagnetic tunnel junctions, the electrically and magnetically controlled optical properties, and the generation of electromagnon solitons for the use as reliable information carriers.Comment: Physica Status Solidi B 1, 1900750 (2020

    D,L-Lysine-Acetylsalicylate + Glycine (LASAG) Reduces SARS-CoV-2 Replication and Shows an Additive Effect with Remdesivir

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease-19 (COVID-19) is still challenging healthcare systems and societies worldwide. While vaccines are available, therapeutic strategies are developing and need to be adapted to each patient. Many clinical approaches focus on the repurposing of approved therapeutics against other diseases. However, the efficacy of these compounds on viral infection or even harmful secondary effects in the context of SARS-CoV-2 infection are sparsely investigated. Similarly, adverse effects of commonly used therapeutics against lifestyle diseases have not been studied in detail. Using mono cell culture systems and a more complex chip model, we investigated the effects of the acetylsalicylic acid (ASA) salt D,L-lysine-acetylsalicylate + glycine (LASAG) on SARS-CoV-2 infection in vitro. ASA is commonly known as Aspirin ® and is one of the most frequently used medications worldwide. Our data indicate an inhibitory effect of LASAG on SARS-CoV-2 replication and SARS-CoV-2-induced expression of pro-inflammatory cytokines and coagulation factors. Remarkably, our data point to an additive effect of the combination of LASAG and the antiviral acting drug remdesivir on SARS-CoV-2 replication in vitro

    Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization

    Get PDF
    Laser-induced terahertz spin transport (TST) and ultrafast demagnetization (UDM) are central but so far disconnected phenomena in femtomagnetism and terahertz spintronics. Here, we use broadband terahertz emission spectroscopy to reliably measure both processes in one setup. We find that the rate of UDM in a single simple ferromagnetic metal film F such as Co70Fe30 or Ni80Fe20 has the same time evolution as TST from F into an adjacent normal-metal layer N such as Pt or W. As this remarkable agreement refers to two very different samples, an F layer vs an F|N stack, it does not result from the trivial fact that TST out of F reduces the F magnetization at the same rate. Instead, our observation strongly suggests that UDM in F and TST in F|N are driven by the same force, which is fully determined by the state of the ferromagnet. An analytical model quantitatively explains our measurements and reveals that both UDM in the F sample and TST in the associated F|N stack arise from a generalized spin voltage, i.e., an excess of magnetization, which is defined for arbitrary, nonthermal electron distributions. We also conclude that contributions due to a possible temperature difference between F and N, i.e., the spin-dependent Seebeck effect, and optical intersite spin transfer are minor in our experiment. Based on these findings, one can apply the vast knowledge of UDM to TST to significantly increase spin-current amplitudes and, thus, open promising pathways toward energy-efficient ultrafast spintronic devices

    Many Labs 2: Investigating Variation in Replicability Across Samples and Settings

    Get PDF
    We conducted preregistered replications of 28 classic and contemporary published findings, with protocols that were peer reviewed in advance, to examine variation in effect magnitudes across samples and settings. Each protocol was administered to approximately half of 125 samples that comprised 15,305 participants from 36 countries and territories. Using the conventional criterion of statistical significance (p < .05), we found that 15 (54%) of the replications provided evidence of a statistically significant effect in the same direction as the original finding. With a strict significance criterion (p < .0001), 14 (50%) of the replications still provided such evidence, a reflection of the extremely highpowered design. Seven (25%) of the replications yielded effect sizes larger than the original ones, and 21 (75%) yielded effect sizes smaller than the original ones. The median comparable Cohen’s ds were 0.60 for the original findings and 0.15 for the replications. The effect sizes were small (< 0.20) in 16 of the replications (57%), and 9 effects (32%) were in the direction opposite the direction of the original effect. Across settings, the Q statistic indicated significant heterogeneity in 11 (39%) of the replication effects, and most of those were among the findings with the largest overall effect sizes; only 1 effect that was near zero in the aggregate showed significant heterogeneity according to this measure. Only 1 effect had a tau value greater than .20, an indication of moderate heterogeneity. Eight others had tau values near or slightly above .10, an indication of slight heterogeneity. Moderation tests indicated that very little heterogeneity was attributable to the order in which the tasks were performed or whether the tasks were administered in lab versus online. Exploratory comparisons revealed little heterogeneity between Western, educated, industrialized, rich, and democratic (WEIRD) cultures and less WEIRD cultures (i.e., cultures with relatively high and low WEIRDness scores, respectively). Cumulatively, variability in the observed effect sizes was attributable more to the effect being studied than to the sample or setting in which it was studied.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Sociales::Instituto de Investigaciones Psicológicas (IIP

    Many Labs 2: Investigating Variation in Replicability Across Sample and Setting

    No full text
    We conducted preregistered replications of 28 classic and contemporary published findings with protocols that were peer reviewed in advance to examine variation in effect magnitudes across sample and setting. Each protocol was administered to approximately half of 125 samples and 15,305 total participants from 36 countries and territories. Using conventional statistical significance (p &lt; .05), fifteen (54%) of the replications provided evidence in the same direction and statistically significant as the original finding. With a strict significance criterion (p &lt; .0001), fourteen (50%) provide such evidence reflecting the extremely high powered design. Seven (25%) of the replications had effect sizes larger than the original finding and 21 (75%) had effect sizes smaller than the original finding. The median comparable Cohen’s d effect sizes for original findings was 0.60 and for replications was 0.15. Sixteen replications (57%) had small effect sizes (&lt; .20) and 9 (32%) were in the opposite direction from the original finding. Across settings, 11 (39%) showed significant heterogeneity using the Q statistic and most of those were among the findings eliciting the largest overall effect sizes; only one effect that was near zero in the aggregate showed significant heterogeneity. Only one effect showed a Tau &gt; 0.20 indicating moderate heterogeneity. Nine others had a Tau near or slightly above 0.10 indicating slight heterogeneity. In moderation tests, very little heterogeneity was attributable to task order, administration in lab versus online, and exploratory WEIRD versus less WEIRD culture comparisons. Cumulatively, variability in observed effect sizes was more attributable to the effect being studied than the sample or setting in which it was studied

    Codebooks and Study Files

    No full text
    See the "Wiki" for more details
    corecore