194 research outputs found
Repulsive photons in a quantum nonlinear medium
The ability to control strongly interacting light quanta (photons) is of
central importance in quantum science and engineering. Recently it was shown
that such strong interactions can be engineered in specially prepared quantum
optical systems. Here, we demonstrate a method for coherent control of strongly
interacting photons, extending quantum nonlinear optics into the domain of
repulsive photons. This is achieved by coherently coupling photons to several
atomic states, including strongly interacting Rydberg levels in a cold Rubidium
gas. Using this approach we demonstrate both repulsive and attractive
interactions between individual photons and characterize them by the measured
two- and three-photon correlation functions. For the repulsive case, we
demonstrate signatures of interference and self ordering from three-photon
measurements. These observations open a route to study strongly interacting
dissipative systems and quantum matter composed of light such as a crystal of
individual photons.Comment: 12 pages, 5 figure
Biotechnological model for ubiquitous mixed petroleum- and bio-based plastics degradation and upcycling into bacterial nanocellulose
Ubiquitous post-consumer plastic waste is often physically mixed combining recalcitrant petroleum-based plastics with bioplastics, forming (petro-bio)plastic streams. Finding appropriate end-of-life (EoL) strategies for mixed (petro-bio)plastic waste is highly pertinent in achieving environmental protection, sustainability for plastic value chain industries including recyclers and government policy makers worldwide. The presence of bioplastic mixed in with polyethylene terephthalate (PET) or other petroleum-based plastic streams poses a substantial drawback to mechanical recycling and strongly impedes the development of sustainable EoL routes. Here, we present a model system for the sustainable management of mixed (petro-bio)plastic waste, demonstrating a biotechnological route through synergy-promoted enzymatic degradation of PET–representing petrochemical polyester plastic–mixed with thermoplastic starch (TPS)–as a model bioplastic. Leaf-branch compost cutinase (LCCICCG) and commercial amylase (AMY) deliver effective depolymerization of this mixed (petro-bio)plastic material, with subsequent bio-upcycling of the mixed waste stream into bacterial nanocellulose (BNC) by Komagataeibacter medellinensis. Compared to LCCICCG and AMY, the LCCICCG/AMY combined treatment synergistically produced a 2.6- and 4.4-fold increase in enzymatic decomposition at 70 °C in four days, respectively, yielding sugars and terephthalic acid (TPA) as the main depolymerization building blocks. Bio-upcycling of post-enzymatic degradation hydrolysates resulted in a high BNC yield of 3 g L−1 after 10 days. This work paves the way for sustainable management routes for challenging mixed recalcitrant plastic and bioplastic waste and prepares opportunities for its participation in the circular production of sustainable eco-polymers
Lagrangian for the Majorana-Ahluwalia Construct
The equations describing self/anti-self charge conjugate states, recently
proposed by Ahluwalia, are re-written to covariant form. The corresponding
Lagrangian for the neutral particle theory is proposed. From a
group-theoretical viewpoint the construct is an example of the
Nigam-Foldy-Bargmann-Wightman-Wigner-type quantum field theory based on the
doubled representations of the extended Lorentz group. Relations with the
Sachs-Schwebel and Ziino-Barut concepts of relativistic quantum theory are
discussed.Comment: 10pp., REVTeX 3.0 fil
Extra Dirac Equations
This paper has rather a pedagogical meaning. Surprising symmetries in the
Lorentz group representation space are analyzed. The aim is
to draw reader's attention to the possibility of describing the particle world
on the ground of the Dirac "doubles". Several tune points of the variational
principle for this kind of equations are briefly discussed.Comment: REVTeX 3.0, 14p
Neutral Particles in Light of the Majorana-Ahluwalia Ideas
The first part of this article (Sections I and II) presents oneself an
overview of theory and phenomenology of truly neutral particles based on the
papers of Majorana, Racah, Furry, McLennan and Case. The recent development of
the construct, undertaken by Ahluwalia [{\it Mod. Phys. Lett. A}{\bf 9} (1994)
439; {\it Acta Phys. Polon. B}{\bf 25} (1994) 1267; Preprints LANL
LA-UR-94-1252, LA-UR-94-3118], could be relevant for explanation of the present
experimental situation in neutrino physics and astrophysics.
In Section III the new fundamental wave equations for self/anti-self
conjugate type-II spinors, proposed by Ahluwalia, are re-casted to covariant
form. The connection with the Foldy-Nigam-Bargmann-Wightman- Wigner (FNBWW)
type quantum field theory is found. The possible applications to the problem of
neutrino oscillations are discussed.Comment: REVTEX file. 21pp. No figure
Curing of Plasmid pXO1 from Bacillus anthracis Using Plasmid Incompatibility
The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures) can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome
A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone
We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose deprivation (6–24 hours), neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after the insult (2 to 5 days), they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours). The process is further enhanced by elevating the production of the chemoattractant SDf-1α and may also be boosted by blocking the activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a computer simulation which should have promising applications for the screening of drug candidates for novel therapies of ischemia-related pathologies
A framework to analyze multiple time series data: A case study with Streptomyces coelicolor
Transcriptional regulation in differentiating microorganisms is highly dynamic involving multiple and interwinding circuits consisted of many regulatory genes. Elucidation of these networks may provide the key to harness the full capacity of many organisms that produce natural products. A powerful tool evolved in the past decade is global transcriptional study of mutants in which one or more key regulatory genes of interest have been deleted. To study regulatory mutants of Streptomyces coelicolor , we developed a framework of systematic analysis of gene expression dynamics. Instead of pair-wise comparison of samples in different combinations, genomic DNA was used as a common reference for all samples in microarray assays, thus, enabling direct comparison of gene transcription dynamics across different isogenic mutants. As growth and various differentiation events may unfold at different rates in different mutants, the global transcription profiles of each mutant were first aligned computationally to those of the wild type, with respect to the corresponding growth and differentiation stages, prior to identification of kinetically differentially expressed genes. The genome scale transcriptome data from wild type and a Δ absA1 mutant of Streptomyces coelicolor were analyzed within this framework, and the regulatory elements affected by the gene knockout were identified. This methodology should find general applications in the analysis of other mutants in our repertoire and in other biological systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47950/1/10295_2005_Article_34.pd
Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.
PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
- …