43 research outputs found

    Major G-Quadruplex Form of HIV-1 LTR Reveals a (3 + 1) Folding Topology Containing a Stem-Loop

    Get PDF
    Nucleic acids can form noncanonical four-stranded structures called G-quadruplexes. G-quadruplex-forming sequences are found in several genomes including human and viruses. Previous studies showed that the G-rich sequence located in the U3 promoter region of the HIV-1 long terminal repeat (LTR) folds into a set of dynamically interchangeable G-quadruplex structures. G-quadruplexes formed in the LTR could act as silencer elements to regulate viral transcription. Stabilization of LTR G-quadruplexes by G-quadruplex-specific ligands resulted in decreased viral production, suggesting the possibility of targeting viral G-quadruplex structures for antiviral purposes. Among all the G-quadruplexes formed in the LTR sequence, LTR-III was shown to be the major G-quadruplex conformation in vitro. Here we report the NMR structure of LTR-III in K+ solution, revealing the formation of a unique quadruplex-duplex hybrid consisting of a three-layer (3 + 1) G-quadruplex scaffold, a 12-nt diagonal loop containing a conserved duplex-stem, a 3-nt lateral loop, a 1-nt propeller loop, and a V-shaped loop. Our structure showed several distinct features including a quadruplex-duplex junction, representing an attractive motif for drug targeting. The structure solved in this study may be used as a promising target to selectively impair the viral cycle

    DNA structures from phosphate chemical shifts

    Get PDF
    For B-DNA, the strong linear correlation observed by nuclear magnetic resonance (NMR) between the 31P chemical shifts (δP) and three recurrent internucleotide distances demonstrates the tight coupling between phosphate motions and helicoidal parameters. It allows to translate δP into distance restraints directly exploitable in structural refinement. It even provides a new method for refining DNA oligomers with restraints exclusively inferred from δP. Combined with molecular dynamics in explicit solvent, these restraints lead to a structural and dynamical view of the DNA as detailed as that obtained with conventional and more extensive restraints. Tests with the Jun-Fos oligomer show that this δP-based strategy can provide a simple and straightforward method to capture DNA properties in solution, from routine NMR experiments on unlabeled samples

    Intrinsic flexibility of B-DNA: the experimental TRX scale

    Get PDF
    B-DNA flexibility, crucial for DNA–protein recognition, is sequence dependent. Free DNA in solution would in principle be the best reference state to uncover the relation between base sequences and their intrinsic flexibility; however, this has long been hampered by a lack of suitable experimental data. We investigated this relationship by compiling and analyzing a large dataset of NMR 31P chemical shifts in solution. These measurements reflect the BI ↔ BII equilibrium in DNA, intimately correlated to helicoidal descriptors of the curvature, winding and groove dimensions. Comparing the ten complementary DNA dinucleotide steps indicates that some steps are much more flexible than others. This malleability is primarily controlled at the dinucleotide level, modulated by the tetranucleotide environment. Our analyses provide an experimental scale called TRX that quantifies the intrinsic flexibility of the ten dinucleotide steps in terms of Twist, Roll, and X-disp (base pair displacement). Applying the TRX scale to DNA sequences optimized for nucleosome formation reveals a 10 base-pair periodic alternation of stiff and flexible regions. Thus, DNA flexibility captured by the TRX scale is relevant to nucleosome formation, suggesting that this scale may be of general interest to better understand protein-DNA recognition

    Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity†

    Get PDF
    G-rich oligonucleotides T30695 (or T30923), with the sequence of (GGGT)4, and T40214, with the sequence of (GGGC)4, have been reported to exhibit anti-HIV and anticancer activity. Here we report on the structure of a dimeric G-quadruplex adopted by a derivative of these sequences in K+ solution. It comprises two identical propeller-type parallel-stranded G-quadruplex subunits each containing three G-tetrad layers that are stacked via the 5′-5′ interface. We demonstrated control over the stacking of the two monomeric subunits by sequence modifications. Our analysis of possible structures at the stacking interface provides a general principle for stacking of G-quadruplexes, which could have implications for the assembly and recognition of higher-order G-quadruplex structures

    Harnessing intrinsic fluorescence for typing of secondary structures of DNA

    No full text
    International audienceHigh-throughput investigation of structural diversity of nucleic acids is hampered by the lack of suitable label-free methods, combining fast and cheap experimental workflow with high information content. Here, we explore the use of intrinsic fluorescence emitted by nucleic acids for this scope. After a preliminary assessment of suitability of this phenomenon for tracking conformational changes of DNA, we examined steady-state emission spectra of an 89-membered set of oligonucleotides with reported conformation (G-quadruplexes (G4s), i-motifs, single-and double-strands) by means of multivariate analysis. Principal component analysis of emission spectra resulted in successful clustering of oligonucleotides into three corresponding conformational groups, without discrimination between single-and double-stranded structures. Linear discriminant analysis was exploited for the assessment of novel sequences, allowing the evaluation of their G4-forming propensity. Our method does not require any labeling agent or dye, avoiding the related bias, and can be utilized to screen novel sequences of interest in a high-throughput and cost-effective manner. In addition, we observed that left-handed (Z-) G4 structures were systematically more fluorescent than most other G4 structures, almost reaching the quantum yield of 5'-[(G3T)3G3]-3' (G3T, the most fluorescent G4 structure reported to date)

    Guanine base stacking in G-quadruplex nucleic acids

    Get PDF
    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes.Published versio

    Sequence-dependent DNA flexibility mediates DNase I cleavage.

    No full text
    International audienceUnderstanding the preference of nonspecific proteins for certain DNA structural features requires an accurate description of the properties of free DNA, especially regarding their possible predisposition to adopt a conformation that favors the formation of a complex. Exploiting previous exhaustive NMR studies performed on free DNA oligomers, we investigated the molecular basis of DNase I sensitivity under conditions where DNase I binding limits the probability of cleavage. We showed that cleavage intensity was correlated with adjacent 3' phosphate linkage flexibility, monitored by (31)P chemical shifts. Examining NMR-refined DNA structures highlighted that sequence-dependent flexible phosphates were associated with large minor groove variations that may promote the affinity of DNase I, according to relevant DNA-protein complexes. In sum, this work demonstrates that specificity in DNA-DNase I interaction is mediated by DNA flexibility, which influences the induced-fit transitions required to form productive complexes

    Rotation of Guanine Amino Groups in G-Quadruplexes: A Probe for Local Structure and Ligand Binding

    No full text
    Nucleic acids are dynamic molecules whose functions may depend on their conformational fluctuations and local motions. In particular, amino groups are dynamic components of nucleic acids that participate in the formation of various secondary structures such as G-quadruplexes. Here, we present a cost-efficient NMR method to quantify the rotational dynamics of guanine amino groups in G-quadruplex nucleic acids. An isolated spectrum of amino protons from a specific tetrad-bound guanine can be extracted from the nuclear Overhauser effect spectroscopy spectrum based on the close proximity between the intra-residue imino and amino protons. We apply the method in different structural contexts of G-quadruplexes and their complexes. Our results highlight the role of stacking and hydrogen-bond interactions in restraining amino-group rotation. The measurement of the rotation rate of individual amino groups could give insight into the dynamic processes occurring at specific locations within G-quadruplex nucleic acids, providing valuable probes for local structure, dynamics, and ligand binding.MOE (Min. of Education, S’pore

    Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide–quadruplex complex

    No full text
    Four-stranded nucleic acid structures called G-quadruplexes have been associated with important cellular processes, which should require G-quadruplex–protein interaction. However, the structural basis for specific G-quadruplex recognition by proteins has not been understood. The DEAH (Asp-Glu-Ala-His) box RNA helicase associated with AU-rich element (RHAU) (also named DHX36 or G4R1) specifically binds to and resolves parallel-stranded G-quadruplexes. Here we identified an 18-amino acid G-quadruplex-binding domain of RHAU and determined the structure of this peptide bound to a parallel DNA G-quadruplex. Our structure explains how RHAU specifically recognizes parallel G-quadruplexes. The peptide covers a terminal guanine base tetrad (G-tetrad), and clamps the G-quadruplex using three-anchor-point electrostatic interactions between three positively charged amino acids and negatively charged phosphate groups. This binding mode is strikingly similar to that of most ligands selected for specific G-quadruplex targeting. Binding to an exposed G-tetrad represents a simple and efficient way to specifically target G-quadruplex structures.MOE (Min. of Education, S’pore)Accepted Versio
    corecore