557 research outputs found

    Time-dependent electron transport and optical emissions in the aurora

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2000This thesis presents the first time-dependent transport model of auroral electrons. The evolution of the spherical electron intensity in phase space is studied for a variety of incident electron intensities. It is shown that the secondary electrons with energies 150 km can take over 300 ms to reach steady state in phase space. Since there are bright optical emissions in this region, such a time dependence in the auroral electrons is important. The emissions of N2(2PG) 3371 A and N+2 (1NG) 4278 A are studied for time-varying electron pulses to show for the first time that this ratio will change until the secondary electrons reach steady state in the ionosphere. The way in which the 3371A/4278A ratio changes with time-varying precipitation depends on the precipitating electron spectra. The changes in the emission ratio can be used to learn more about the auroral acceleration region and the role of the ionosphere in auroral emissions. Field-aligned bursts (FABs), often observed in electron spectra of instruments flying over flickering aurora, are modeled with the time-dependent transport model. How the ionosphere modifies these electrons is shown. The 3371 and 4278 A emissions of flickering FABs are modeled to study the optical effects of modulated electron intensities in time. A study of 4278 A emissions for electron source regions from 630 to 4,000 km are studied along with frequency variations from 5 to 100 Hz. This study shows that the percent variation of the maximum to the minimum column brightness is less for higher frequencies and more distant source regions. It is shown that with an accurate time-dependent transport calculation and 4278 A emission observations of flickering aurora it should be possible to deduce the source altitude of the modulated electrons creating the optical flickering

    Simple geometric algorithms to aid in clearance management for robotic mechanisms

    Get PDF
    Global geometric shapes such as lines, planes, circles, spheres, cylinders, and the associated computational algorithms which provide relatively inexpensive estimates of minimum spatial clearance for safe operations were selected. The Space Shuttle, remote manipulator system, and the Power Extension Package are used as an example. Robotic mechanisms operate in quarters limited by external structures and the problem of clearance is often of considerable interest. Safe clearance management is simple and suited to real time calculation, whereas contact prediction requires more precision, sophistication, and computational overhead

    Single-point Lathe Tools

    Get PDF

    3UCubed: The IMAP Student Collaboration CubeSat Project

    Get PDF
    The 3UCubed project is a 3U CubeSat being jointly developed by the University of New Hampshire, Sonoma State University, and Howard University as a part of the NASA Interstellar Mapping and Acceleration Probe (IMAP)1 student collaboration. This project consists of a multidisciplinary team of undergraduate students from all three universities. The mission goal of the 3UCubed is to understand how Earth\u27s polar upper atmosphere (‘the thermosphere’ in Earth’s auroral regions) responds to particle precipitation and solar wind forcing and internal magnetospheric processes. 3UCubed includes two instruments with rocket heritage to achieve the science mission: an ultraviolet photomultiplier tube (UV-PMT) and electron retarding potential analyzer (ERPA). The spacecraft bus consists of the following subsystems–Attitude Determination and Control, Command and Data Handling, Power, Communication, Structural, and Thermal. Currently, the project is in the post-PDR stage, starting to build and test engineering models to develop a FlatSat prior to critical design review in 2023. The goal is to launch at least one 3U CubeSat a to collect science data close to the anticipated peak of Solar Cycle 25 around July 2025.2 Our mother mission–IMAP is also projected to launch in 2025, which will let us jointly analyze the science data of the main mission, providing the solar wind measurements and inputs to the magnetosphere with that of 3UCubed, providing the response of Earth’s cusp to these inputs

    Partnering to Enhance Education and Public Engagement Programs

    Get PDF
    Collaborating with partners is a fundamental aspect of the Lunar and Planetary Institute's (LPI) educational and public engagement efforts. Such partnerships enable scientists and educators to include members of the audience in program planning and execution. Ultimately, partnerships strengthen programs by providing diverse resources, expertise, and expanding the potential audience
    • …
    corecore