68 research outputs found

    Changes in biological productivity along the northwest African margin over the past 20,000 years

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 31 (2016): 185–202, doi:10.1002/2015PA002862.The intertropical convergence zone and the African monsoon system are highly sensitive to climate forcing at orbital and millennial timescales. Both systems influence the strength and direction of the trade winds along northwest Africa and thus directly impact coastal upwelling. Sediment cores from the northwest African margin record upwelling-related changes in biological productivity connected to changes in regional and hemispheric climate. We present records of 230Th-normalized biogenic opal and Corg fluxes using a meridional transect of four cores from 19°N–31°N along the northwest African margin to examine changes in paleoproductivity since the last glacial maximum. We find large changes in biogenic fluxes synchronous with changes in eolian fluxes calculated using end-member modeling, suggesting that paleoproductivity and dust fluxes were strongly coupled, likely linked by changes in wind strength. Opal and Corg fluxes increase at all sites during Heinrich Stadial 1 and the Younger Dryas, consistent with an overall intensification of the trade winds, and changes in the meridional flux gradient indicate a southward wind shift at these times. Biogenic fluxes were lowest, and the meridional flux gradients were weakest during the African Humid Period when the monsoon was invigorated due to precessional changes, with greater rainfall and weaker trade winds over northwest Africa. These results expand the spatial coverage of previous paleoproxy studies showing similar changes, and they provide support for modeling studies showing changes in wind strength and direction consistent with increased upwelling during abrupt coolings and decreased upwelling during the African Humid Period.NSF Grant Numbers: OCE-1103262, OCE-1030784, OCE-0402348; Center for Climate and Life2016-07-2

    Analysis of hand-forearm anthropometric components in assessing handgrip and pinch strengths of school-aged children and adolescents: a partial least squares (PLS) approach

    Get PDF
    Background: The purpose of this study was to examine the influence of hand-forearm anthropometric dimensions on handgrip and pinch strengths among 7�18 years children and adolescents and to investigate the extent to which these variables can be used to predict hand strength. Methods: Four types of hand strengths including handgrip, tip to tip, key, and three-jaw chuck pinches were measured in 2637 healthy children and adolescents (1391 boys and 1246 girls) aged 7�18 years using standard adjustable Jamar hydraulic hand dynamometer and pinch gauge. A set of 17 hand-forearm anthropometric dimensions were also measured with an accurate digital caliper and tape measure. Results: No significant differences were found between the hand strengths of boys and girls up to the age of 10 years. Gender related differences in handgrip and pinches were observed from the age of 11 years onwards, with boys always being stronger. The dominant hand was stronger than the non-dominant hand (8 for handgrip and by about 10 for all three types of pinches). The strongest correlations were found between the hand length and hand strengths (r > 0.83 for handgrip and three all pinches; p < 0.001, 2-tailed). Based on the partial least squares (PLS) analysis, 8 out of 17 anthropometric indices including hand length, hand circumference, thumb length, index finger length, middle finger length, and forearm length had considerable loadings in the PLS analysis, which together accounted for 46 of the total variance. Conclusions: These results may be used by health professionals in clinical settings as well as by designers to create ergonomic hand tools. © 2021, The Author(s)

    Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum

    Get PDF
    The intertropical convergence zone is a near-equatorial band of intense rainfall and convection. Over the modern Atlantic Ocean, its annual average position is approximately 5° N, and it is associated with low sea surface salinity and high surface temperatures. This average position has varied since the Last Glacial Maximum, in response to changing climate boundary conditions. The nature of this variation is less clear, with suggestions that the intertropical convergence zone migrated north–south away from the colder hemisphere or that it contracted and expanded symmetrically around its present position2. Here we use paired Mg/Ca and δ18O measurements of planktonic foraminifera for a transect of ocean sediment cores to reconstruct past changes in tropical surface ocean temperature and salinity in the Atlantic Ocean over the past 25,000 years. We show that the low-salinity, high-temperature surface waters associated with the intertropical convergence zone migrated southward of their present position during the Last Glacial Maximum, when the Northern Hemisphere cooled, and northward during the warmer early Holocene, by about ±7° of latitude. Our evidence suggests that the intertropical convergence zone moved latitudinally over the ocean, rather than expanding or contracting. We conclude that the marine intertropical convergence zone has migrated significantly away from its present position owing to external climate forcing during the past 25,000 years

    Twelve thousand years of dust: The Holocene global dust cycle constrained by natural archives

    Get PDF
    Mineral dust plays an important role in the climate system by interacting with radiation, clouds, and biogeochemical cycles. In addition, natural archives show that the dust cycle experienced variability in the past in response to global and local climate change. The compilation of the DIRTMAP paleodust datasets in the last two decades provided a target for paleoclimate models that include the dust cycle, following a time slice approach. We propose an innovative framework to organize a paleodust dataset that moves on from the positive experience of DIRTMAP and takes into account new scientific challenges, by providing a concise and accessible dataset of temporally resolved records of dust mass accumulation rates and particle grain-size distributions. We consider data from ice cores, marine sediments, loess/paleosol sequences, lake sediments, and peat bogs for this compilation, with a temporal focus on the Holocene period. This global compilation allows investigation of the potential, uncertainties and confidence level of dust mass accumulation rates reconstructions, and highlights the importance of dust particle size information for accurate and quantitative reconstructions of the dust cycle. After applying criteria that help to establish that the data considered represent changes in dust deposition, 43 paleodust records have been identified, with the highest density of dust deposition data occurring in the North Atlantic region. Although the temporal evolution of dust in the North Atlantic appears consistent across several cores and suggest that minimum dust fluxes are likely observed during the Early to mid-Holocene period (6000–8000 years ago), the magnitude of dust fluxes in these observations is not fully consistent, suggesting that more work needs to be done to synthesize datasets for the Holocene. Based on the data compilation, we used the Community Earth System Model to estimate the mass balance and variability of the global dust cycle during the Holocene, with dust load ranging from 17.1 to 20.5 Tg between 2000 and 10 000 years ago, and a minimum in the Early to Mid-Holocene (6000–8000 years ago)

    Geochemical response of the mid-depth Northeast Atlantic Ocean to freshwater input during Heinrich events 1 to 4

    Get PDF
    PublishedArticleHeinrich events are intervals of rapid iceberg-sourced freshwater release to the high latitude North Atlantic Ocean that punctuate late Pleistocene glacials. Delivery of fresh water to the main North Atlantic sites of deep water formation during Heinrich events may result in major disruption to the Atlantic Meridional Overturning Circulation (AMOC), however, the simple concept of an AMOC shutdown in response to each freshwater input has recently been shown to be overly simplistic. Here we present a new multi-proxy dataset spanning the last 41,000 years that resolves four Heinrich events at a classic mid-depth North Atlantic drill site, employing four independent geochemical tracers of water mass properties: boron/calcium, carbon and oxygen isotopes in foraminiferal calcite and neodymium isotopes in multiple substrates. We also report rare earth element distributions to investigate the fidelity by which neodymium isotopes record changes in water mass distribution in the northeast North Atlantic. Our data reveal distinct geochemical signatures for each Heinrich event, suggesting that the sites of fresh water delivery and/or rates of input played at least as important a role as the stage of the glacial cycle in which the fresh water was released. At no time during the last 41 kyr was the mid-depth northeast North Atlantic dominantly ventilated by southern-sourced water. Instead, we document persistent ventilation by Glacial North Atlantic Intermediate Water (GNAIW), albeit with variable properties signifying changes in supply from multiple contributing northern sources.This research used samples provided by the Integrated Ocean Drilling (Discovery) Program IODP, which is sponsored by the US National Science Foundation and participating countries under management of Joint Oceanographic Institutions, Inc. We thank Walter Hale and Alex Wülbers for help with sampling, Kirsty Crocket for providing additional samples and Matt Cooper, Andy Milton, Mike Bolshaw and Dave Spanner for analytical support. Heiko Pälike, David Thornalley and Rachel Mills are thanked for productive discussions and comments on earlier versions of this work. We also thank three anonymous reviewers for their constructive feedback, which greatly improved the manuscript. Funding for this project was provided by NERC studentships to A.J.C. (grant NE/D005728/2) and T.B.C. (NE/I528626/1), with additional funding support from a Royal Society Wolfson Research Merit Award and NERC grants NE/F00141X/1 and NE/I006168/1 to P.A.W. and NE/D00876X/2 to G.L.F

    Geochemical response of the mid-depth Northeast Atlantic Ocean to freshwater input during Heinrich events 1 to 4

    Full text link

    Age, gender and side-stratified grip strength norms and related socio-demographic factors for 20�80 years Iranian healthy population: Comparison with consolidated and international norms

    No full text
    As an index for many adverse health outcomes, normative values on handgrip strength are established for many populations. The aim of this study was to establish handgrip strength (HGS) norms for the Iranian population and to compare them with other existing norms. Related variables affecting HGS were also determined in order to provide appropriate prediction models. The sample consisted of 4282 Iranian 20�80 years adults; divided into 5-year intervals, male/female and dominant/non-dominant hand. Results were compared to consolidated data and those of some other countries. To ensure a valid and comparable dataset, HGS was measured using the JAMAR® hydraulic dynamometer following the standardized procedure. Hand length, palm length, palm width, forearm length, wrist circumference, forearm circumference, height and weight were measured, and BMI was calculated. HGS norms for Iranian adults were established. Inverted U-shaped lifespan profiles were found with mean maximum values of about 53 kg for males (35�39 years) and 31 kg for females (40�44 years). Two regression models (by hand dominance) were developed. The mean values of HGS in Iran were weaker than consolidated norms but greater than in some Asian countries. Applying normative data specific to each population is more accurate than international or multinational norms. It is recommended to investigate the causes of accelerated age-related decline in HGS of Iranian elders in future studies. © 2020 Elsevier B.V
    corecore