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Abstract. Mineral dust plays an important role in the cli-

mate system by interacting with radiation, clouds, and bio-

geochemical cycles. In addition, natural archives show that

the dust cycle experienced variability in the past in response

to global and local climate change. The compilation of the

DIRTMAP (Dust Indicators and Records from Terrestrial

and MArine Palaeoenvironments) paleodust data sets in the

last 2 decades provided a benchmark for paleoclimate models

that include the dust cycle, following a time slice approach.

We propose an innovative framework to organize a paleodust

data set that builds on the positive experience of DIRTMAP

and takes into account new scientific challenges by provid-

ing a concise and accessible data set of temporally resolved

records of dust mass accumulation rates and particle grain

size distributions. We consider data from ice cores, marine

sediments, loess–paleosol sequences, lake sediments, and

peat bogs for this compilation, with a temporal focus on the

Holocene period. This global compilation allows the investi-

gation of the potential, uncertainties, and confidence level of

dust mass accumulation rate reconstructions and highlights

the importance of dust particle size information for accurate

and quantitative reconstructions of the dust cycle. After ap-

plying criteria that help to establish that the data considered

represent changes in dust deposition, 45 paleodust records

have been identified, with the highest density of dust deposi-

tion data occurring in the North Atlantic region. Although the

temporal evolution of dust in the North Atlantic appears con-

sistent across several cores and suggests that minimum dust

fluxes are likely observed during the early to mid-Holocene

period (6000–8000 years ago), the magnitude of dust fluxes

in these observations is not fully consistent, suggesting that

more work needs to be done to synthesize data sets for the

Holocene. Based on the data compilation, we used the Com-

munity Earth System Model to estimate the mass balance of

and variability in the global dust cycle during the Holocene,

with dust loads ranging from 17.2 to 20.8 Tg between 2000

and 10 000 years ago and with a minimum in the early to

mid-Holocene (6000–8000 years ago).

1 Introduction

Paleoclimate records from natural archives have laid founda-

tions for understanding the variability in the Earth’s climate

system over different timescales. Paleoclimate proxies shed

light on past environmental conditions, such as the compo-

sition of the atmosphere, global ice volume, sea level, and

surface temperatures (Bradley, 1999). Paleodust reconstruc-

tions paired with other proxies showed the response of the

climate system to orbitally induced forcing, including feed-

back mechanisms. Dust feedbacks on the climate system in-

clude scattering and absorption of solar radiation and indirect

effects on clouds and the global carbon cycle (e.g., Boucher

et al., 2013; Martin, 1990).

The story told by paleodust archives suggests that in-

creased aridity (An et al., 1991; Liu, 1985; Liu and Ding,

1998) and wind gustiness (McGee et al., 2010; Muhs et

al., 2013a) enhanced the dust cycle during cold periods

over glacial–interglacial timescales, with additional mecha-

nisms introducing characteristic geographic patterns and/or

imprinting the archives with characteristic signals in different

geographical settings. These mechanisms include increased

sediment availability by glacial erosion (Delmonte et al.,

2010a; Petit et al., 1999), reorganization of the atmospheric

circulation between mid- and high latitudes (Fuhrer et al.,

1999; Lambert et al., 2008; Mayewski et al., 1997, 2014),

shifts in the intertropical convergence zone (ITCZ) (McGee

et al., 2007; Rea, 1994), changes in the monsoonal variability

(Clemens and Prell, 1990; Hovan et al., 1991; Tiedemann et

al., 1994), and regional drying (Lu et al. 2010).

The growing number of paleodust archives and the inclu-

sion of the dust cycle in climate models has promoted syn-

thesis efforts in the compilation of global dust data sets (Ma-

howald et al., 1999). The Dust Indicators and Records from

Terrestrial and MArine Palaeoenvironments (DIRTMAP)

project (Kohfeld and Harrison, 2001) formalized the com-

pilation of dust mass accumulation rates (dust MARs, or

DMARs) from marine and ice cores, later complemented

by terrestrial sedimentary records (Derbyshire, 2003). This

project followed a time slice approach, providing reference

values of DMARs for the Last Glacial Maximum (LGM)

and late Holocene and for modern data, including from sed-

iment traps. DMAR is the fundamental measurement nec-

essary to cross-correlate variability among dust archives and

sites. Without it, only the relative timing and amplitude of in-

dividual records can be studied. In combination with global

climate models, DMAR data sets enable quantitative recon-

structions of the global dust cycle. The DIRTMAP compila-

tion showed a globally averaged glacial / interglacial ratio of

∼ 2.5 in dust deposition. Subsequent work expanded upon

the initial compilation (DIRTMAP2: Tegen et al., 2002),

and the most recent version of the database (DIRTMAP3:

Maher et al., 2010) also contains an extensive repository

of additional metadata from the original publications. The

DIRTMAP data sets have proven to represent an invaluable

tool for paleoclimate research and model–data intercompari-

son.

The full definition of the global dust cycle in terms of

DMAR is unavoidably linked to the dust grain size dis-

tributions that characterize the mass balance and its spa-

tial evolution. The more advanced dust models define a

model particle size range and distribution, which would re-

quire (although this has been often neglected) explicitly con-

sidering the size range of dust found in the dust deposi-

tion data in model–observation intercomparisons. This as-

pect was initially taken into account for terrestrial sediments

in Mahowald et al. (2006) to match the specific model size

range (0.1–10 µm) and was recently extended by Albani et

al. (2014). Nevertheless, the necessity of more extensive

Clim. Past, 11, 869–903, 2015 www.clim-past.net/11/869/2015/



S. Albani et al.: Twelve thousand years of dust 871

grain size information from dust data has been emphasized

by Maher et al. (2010), as well as by other review papers

on dust (e.g., Formenti et al., 2011; Mahowald et al., 2014).

Coherent information on grain size is missing in DIRTMAP3

(Maher et al., 2010) because of the difficulty of making a syn-

thesis from measurements produced by a variety of particle

size measurement techniques often yielding quite different

results (Mahowald et al., 2014; Reid, 2003).

A time slice approach is often used by the paleoclimate

modeling community to target key periods in climate his-

tory, such as the Last Glacial Maximum ∼ 21 000 years Be-

fore Present (LGM: 21 ka BP), or the mid-Holocene (MH:

6 ka BP), in the framework of the Paleoclimate Modelling

Inter-comparison Project (PMIP: Joussaume and Taylor,

2000). Continuing improvement in the performance of large-

scale supercomputers is opening up doors to performing tran-

sient simulations on paleoclimate timescales, both with inter-

mediate complexity (Bauer and Ganopolski, 2014) and more

complex Earth system models (ESMs) (Liu et al., 2009).

PMIP3 called for additional key transient experiments to

study abrupt climate change, with the implication that, at the

same time, target observational data sets with the necessary

temporal continuity and resolution are needed (Otto-Bliesner

et al., 2009).

We propose an innovative framework to organize a pa-

leodust data set that builds on the positive experience of

DIRTMAP and takes into account the new scientific chal-

lenges outlined above by providing a synthesized and acces-

sible data set of temporally resolved records of dust MARs

and size distributions. We aim to provide a database that is

a concise and accessible compilation of time series, includ-

ing age (with uncertainty), dust MAR (with uncertainty), and

dust particle size distribution (where available), standard-

ized by the use of a common binning scheme and comple-

mented by a categorical attribution of confidence based on

general consensus. Besides the basic information mentioned

above, we also report the ancillary information necessary to

re-derive the dust MARs time series, i.e., the detailed depths

and the relevant dust variables. Inspired by DIRTMAP, our

new compilation considers DMARs as the key variable for

a coherent study of paleodust archives. The elements of in-

novation that we introduce here (size distributions, tempo-

ral resolution, and attribution of confidence level), however,

constitute a leap forward to a new-generation dust database.

We focus on dust variability during the Holocene, with an

emphasis on the MH as a key PMIP scenario and also in

relation to the large variability that affected the, at present,

largest dust source in the world, northern Africa, with the

termination of the African Humid Period (AHP) (deMeno-

cal et al., 2000; McGee et al., 2013). For this reason we only

selected paleodust records encompassing the MH with some

degree of temporal resolution (see Sect. 3), although we show

the time series from the LGM in the paper to provide refer-

ence to other key climate conditions and to placeour work in

a fuller context with respect to the DIRTMAP compilation.

The developed framework is suitable for a more extensive

compilation.

We acknowledge that there is a richness of information

intrinsic to each sedimentary record (i.e., as in the original

studies) that is not necessarily fully captured by the synthe-

sized information we report, despite our efforts to be as com-

plete as possible: simplification is inherent in a synthesis. For

the sake of accessibility, we refrain from reporting extensive

information that cannot be coherently organized. We there-

fore provide a brief summary and refer to the relevant lit-

erature for detailed descriptions of specific records (Supple-

ment). In addition, because our purpose is to provide a quan-

titative constraint on the dust cycle, we only considered sedi-

mentary records that allow the derivation of meaningful dust

MARs with the information we could access. Many more

studies have focused on dust and provided important, good-

quality information, but they did not allow a time-resolved

estimate of dust MAR. We refer to these studies when appro-

priate, as they provide further context to ensure our interpre-

tations.

Finally, we use the Community Earth System Model

(CESM) in combination with the DMAR and size data (Al-

bani et al., 2014; Mahowald et al., 2006) from the compila-

tion to estimate the mass balance of the global dust cycle and

its variability during the Holocene.

Section 2 gives an overview of the kind of natural archives

initially considered for this compilation, while in Sect. 3 we

explain our methodological approach to selecting and orga-

nizing the records. In Sect. 4 we present the database and

model-based reconstructions and discuss the emerging prop-

erties in relation to the climate features in different spatial

domains. We summarize our work in Sect. 5.

2 Paleodust archives

Natural archives that preserve dust sediments have different

characteristics in terms of geographical settings and spatial

distributions around the globe, the accuracy of the age mod-

els and temporal resolution, and the ability to isolate eolian

dust from other depositional contributions. Each type of pa-

leodust archive has its own strengths and limitations, and it

is only by considering high-quality records of all types (from

land, ice, and ocean archives) that we can hope to build a

consistent reconstruction of the global dust cycle. We only

include paleodust records that allow the estimation of dust

MARs with relevance for medium- or large-scale dust ex-

port.

Natural archives preserve eolian dust within a sedimentary

matrix. The essential elements for a paleodust record are the

possibility of establishing a reliable chronology, the estima-

tion of the sedimentation rates, and the isolation of the eolian

component (Fig. 1). Throughout the paper we use the term

“sediment” in a broad sense that encompasses ice as well as

other sediments in a strict sense.
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Figure 1. Schematic representation of the process of calculation

of eolian DMAR (dust mass accumulation rate), and its relation

to the SR (sedimentation rate), DBD (dry bulk density), SBMAR

(sediment bulk MAR), and EC (eolian content). DMAR (on age

scale) is the typical path for loess–paleosol records, whereas DMAR

(chronology) indicates the final step of the workflow when EC is

also measured.

One of the key elements in the production of a paleodust

record is the possibility of establishing a depth–age relation.

Typically the starting point for this procedure is the attribu-

tion of age to a series of specific depth layers along the pro-

file, based on numerical dating or stratigraphic correlations.

Numerical dating can be based on the counting of annual lay-

ers, radionuclide decays (e.g., 14C), or exposure to radiation

(e.g., thermoluminescence (TL) or optically stimulated lumi-

nescence (OSL)) (Brauer et al., 2014). Stratigraphic correla-

tions either exploit stratigraphic markers, such as known vol-

canic eruptions and spikes in tracers of the atmospheric ther-

monuclear test explosions, or are attributed by wiggle match-

ing an age-carrier profile from the study site (e.g., δ18O of

foraminifera in marine sediment cores or methane concentra-

tion in ice cores) with a reference record of global signatures,

such as global ice volume (e.g., Martinson et al., 1987) or

the variations in atmospheric methane concentrations (e.g.,

Loulergue et al., 2008).

Sediment chronologies can be established based on the

initial age–depth relations identified along a profile. With

“chronology” we mean a continuous function that provides

a unique attribution of the depth–age relation along the en-

tire profile, based on some kind of age model. Age models

can vary from simple linear sedimentation models to com-

plex Bayesian models (Brauer et al., 2014).

A general expression for dust (or eolian – the two terms

will be used equivalently throughout the text) MARs is the

following: DMAR=SBMAR ·EC, where SBMAR is the

sediment bulk mass accumulation rate and EC is eolian con-

tribution.

The estimation of SBMAR relies on a couple of main ap-

proaches. The first one is based on estimating SBMARs be-

tween dated horizons as the product of sedimentation rates

(SRs) and dry bulk densities (DBDs): SBMAR=SR ·DBD.

Either a linear sedimentation rate (LSR) is derived between

dated layers or more complex age models are applied, result-

ing in diverse SR profiles. The other approach is specific to

the marine sediments realm, and it is largely (other than for

decay correction) independent of the underlying age model:

it is based on the assumption that the rapid scavenging of
230Th produced in the water column by decay of dissolved

uranium results in its flux to the seafloor being equal or close

to its known rate of production. Measurements of 230Th in

marine sediments therefore allow us to estimate instanta-

neous SBMARs that are independent of LSRs (François et

al., 2004).

Because eolian DMAR is the product of at least two

factors (SBMAR and EC), the sampling (depth) resolution

at which the two of them are available will determine the

DMAR resolution, and in some cores the resolutions may co-

incide. Sometimes a constant LSR is assumed between dated

depth layers, whereas stratigraphic samples are analyzed at

a higher resolution and an estimated age is assigned based

on the age model (Fig. 2). On the timescale of interest, it

should be noted that deviations from the ideal pairing of EC

and SBMAR measurements along a profile might be consid-

ered acceptable if the resolutions are not too different. On the

other hand, if one variable (typically EC) has a much higher

resolution than the other, then its high resolution is not in-

formative with respect to their product (DMAR), and misin-

terpretations could arise. In those cases the lower-resolution

variable should be used to provide the pace of the record’s

resolution. We did not make any adjustments to the data in

this respect; note that we only have records where either the

resolutions match or they are very similar (see Supplement).

An additional aspect to consider when dealing with dust

MARs is the relationship between the dust deposition flux

(DF) and the dust MAR, i.e., to what extent the mea-

sured DMAR is representative (in a quantitative way) of

the dust deposition, which is of primary interest: ideally

DMAR=DF. Deviations from this ideal relation occur, for

instance, when sediment redistribution disturbs the ocean

sediments (François et al., 2004) or when erosion leaves

hiatuses in loess–paleosol sequences (Stevens et al., 2007).

When there is an indication of such occurrences, we took

focussing-corrected data in the former case or considered

only the undisturbed sections of the records in the latter case.

The other fundamental piece of information is the size dis-

tribution of dust, which is tightly coupled to the DMAR in

determining the magnitude (or mass balance) of the dust cy-

cle (Albani et al., 2014; Mahowald et al., 2014; Schulz et al.,

1998; Lu et al., 1999). In addition, size data is a necessary

piece of information to determine the provenance of dust. At

accumulation sites far from the major dust sources, size dis-

tribution allows (together with geochemical and mineralogi-
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Figure 2. Example of different resolution of SBMAR and EC

(Clemens and Prell, 1990).

cal data) the identification of local versus remote inputs (Al-

bani et al., 2012a; Delmonte et al., 2010b). At terrestrial sites

proximal to the source areas, it is necessary to evaluate the

amount of dust actually available for long-range transport

(Mahowald et al., 2006; Muhs et al., 2013a; Roberts et al.,

2003).

We next analyze the main characteristics of the different

kinds of paleodust records considered for this compilation:

ice cores, marine sediments, loess–paleosol sequences, lake

sediments and peat bogs.

2.1 Ice cores

Ice cores constitute a natural sampler of past atmospheric

composition, including greenhouse gases and aerosols. The

isolation of the eolian component from the ice matrix is

rather straightforward – it is usually obtained by melting the

ice at room temperature (Delmonte et al., 2004), although

sublimation of the ice is another option (Iizuka et al., 2013),

so that the ice allows the most pristine preservation of the

locally deposited atmospheric aerosol.

The presence of perennial ice limits the geographical cov-

erage of ice core records worldwide, and the recovery of long

dust stratigraphies is limited to the high latitudes and a few

alpine glaciers in the mid- and low latitudes. Often the EC

is a direct measure of the insoluble dust concentration and

size distribution in the ice samples, using either a Coulter

counter (Delmonte et al., 2004) or a laser diffraction particle

counter (Lambert et al., 2008). Alternatively a geochemical

dust proxy can be used (e.g., McConnell et al., 2007), and

the most common approach considers non-sea-salt calcium

(Röthlisberger et al., 2002; Fischer et al., 2007). Despite the

fact that the dust–calcium relation should be treated with cau-

tion under certain circumstances (Ruth et al., 2002, 2008),

this approach has successfully been used to produce dust

records in Greenland (e.g., Fuhrer et al., 1999; Mayewski et

al., 1997) and Antarctica (Lambert et al., 2012; Schüpbach et

al., 2013).

Since in most cases both dust (insoluble) and calcium

records were produced at the same location, we focus on

insoluble particle records, which also include dust size dis-

tributions. Possible non-dust contributions include volcanic

tephra, which is usually identifiable and excluded from the

records (e.g., Narcisi et al., 2010). For Greenland there is

only one record spanning the Holocene, GISP2, for which

we consider calcium as a proxy for dust (Mayewski et al.,

1997).

For the estimation of SBMAR, postdepositional changes

may potentially affect snow and ice accumulation rates

through surface redistribution or sublimation. In the polar

ice sheets plateaus these effects are probably negligible on

domes, where ice cores are usually drilled (Frezzotti et al.,

2007), so that dust DMAR=DF.

Polar ice core age models are in continuous evolution, and

they benefit from the growing number of deep ice cores.

A striking feature is the absolute counting of annual lay-

ers in Greenland ice cores (Vinther et al., 2006), which in

combination with several ice and stratigraphic markers (e.g.,

methane spikes, volcanic signals) allows establishing con-

sistent chronologies for both Greenland and Antarctic ice

cores. In this work we use the most recent Antarctic Ice Core

Chronology 2012 (AICC2012) chronology for Antarctic ice

cores (Veres et al., 2013). Because of the high sediment ma-

trix accumulation rates compared to other natural archives,

polar ice cores usually provide the highest-resolution dust

records. Dust concentration records are also available from

alpine glaciers (e.g., Thompson et al., 1995, 1997). While it

is possible to derive estimates of dust MARs on the glacial–

interglacial timescale (Kohfeld and Harrison, 2001), it is

problematic to calculate DMAR time series. This is because

there are no reliable age models due to the difficulty in es-

tablishing adequate accumulation stratigraphies in such en-

vironments.

With a few exceptions from sites on the edges of the

ice sheets both in Greenland (Renland: Hansson, 1994) and

Antarctica (e.g., TALDICE – TALos Dome Ice CorE: Al-

bani et al., 2012a; Delmonte et al., 2013), polar ice cores

are thought to archive almost exclusively dust from remote

source areas (Bory et al., 2003; Delmonte et al., 2010b) and

to be representative of the magnitude and variability in the

dust cycle at least over the high latitudes in both hemispheres

(Mahowald et al., 2011).

2.2 Marine sediments

With the oceans covering two thirds of the Earth’s surface

marine sediment cores represent key paleoclimate archives,

recording among other things global land ice volumes, ocean

productivity, and the main characteristics of the ocean deep

circulation (e.g., Bradley, 1999). Dust particles deposited
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to the ocean’s surface attach to other suspended particles

and get scavenged throughout the water column, determin-

ing the accumulation of eolian material in pelagic sedi-

ments (Bory and Newton, 2000). Despite the complexity

of and uncertainties in the dynamics of particle sedimenta-

tion throughout the water column (e.g., Bory and Newton,

2000; De La Rocha et al., 2008), as well as their poten-

tial advection downstream (Siegel and Deuser, 1997; Han et

al., 2008), we can reasonably make the approximation that

dust DF(surface)=DF(benthic). This is valid in most regions

(Siegel and Armstrong, 2002; Kohfeld and Tegen, 2007),

with the notable exception of the Southern Ocean (Kohfeld

and Harrison, 2001).

The pelagic environment is characterized by low deposi-

tion rates, so that most marine records naturally have a lower

temporal resolution than ice cores. Chronologies for marine

sediment cores are often derived by stratigraphic correlation

of δ18O records of benthic or pelagic foraminifera (represen-

tative of a combination of global ice volume and tempera-

ture) with reference stacks such as Mapping Spectral Vari-

ability in Global Climate (SPECMAP) (Imbrie et al., 1984;

Martinson et al., 1987) or LR04 (Lisiecki and Raymo, 2005).

In many studies, additional constraints for the age models

are given by radiocarbon dating foraminifera (e.g., Ander-

son et al., 2006; McGee et al., 2013) or tephras (Nagashima

et al., 2007), which is especially relevant for the Holocene.

The age–depth relation is usually assigned by linear inter-

polation between dated layers. Chronologies only based on

stratigraphic correlation of δ18O records are inherently af-

fected by a significant degree of uncertainty for the Holocene

because the youngest tie points in δ18O stacks can be consid-

ered the Last Glacial Maximum (18 ka BP) and the Marine

Isotopic Stage (MIS) boundary MIS1–2 (14 ka BP) (Lisiecki

and Raymo, 2005). Often, in the absence of absolute ages, the

assumption is made that the surface sediment age is 0 ka BP,

although the surface sediments may be disturbed or partially

lost during the core recovery.

Two main strategies are used to derive dust records from

marine cores. In the first, more traditional “operational” ap-

proach, SBMAR=LSR ·DBD, with LSR calculated from

the age model and DBD measured or estimated. EC is deter-

mined by isolating the lithogenic fraction from the sediment

matrix by the subsequent removal of the organic component,

carbonates, and biogenic opal by thermal or chemical treat-

ments (Rea and Janecek, 1981). In this approach the basic

assumption is that the entire lithogenic fraction is eolian in

origin. Corrections for volcanic contributions were attempted

by visual inspection (Hovan et al., 1991) or by the use of

geochemical tracers (Olivarez et al., 1991), which could also

help to distinguish fluvial from eolian inputs (Box et al.,

2011). Other spurious lithogenic inputs may include material

from turbidite currents, hemipelagic sediments, or ice-rafted

debris (e.g., Rea and Hovan, 1995). Additionally, sediment

redistribution may alter the depositional stratigraphy, bias-

ing the true sedimentation rates (François et al., 2004); this

is usually not accounted for in studies following this kind

of approach. Here, we exclude sites known (or very likely)

to be significantly affected by sediment redistribution (e.g.,

nepheloid layers: Kohfeld and Harrison, 2001) and ice-rafted

debris (Kohfeld and Harrison, 2001) and those close to the

continental margins (e.g., Serno et al., 2014).

The other strategy consists of deriving SBMAR from
230Th profiling (François et al., 2004). Briefly, 230Th (half-

life: 75 690 years) is produced uniformly throughout the

ocean by radioactive decay of dissolved 234U. Due to its

high particle reactivity, 230Th is efficiently scavenged by par-

ticulate matter and has a short residence time in the ocean

(< 30 years) (Bacon and Anderson, 1982). The rain rate of

scavenged 230Th to the sediments is therefore equal to its

known rate of production in the overlying water column

(Henderson et al., 1999). SBMARs are calculated by divid-

ing the production rate of 230Th in the water column by

concentrations of scavenged 230Th in the sediment (Bacon,

1984; François et al., 2004).

At sites potentially influenced by sediment redistribution,

the 230Th profiling method is probably the more reliable ap-

proach for the determination of SBMAR, as it accounts for

sediment focusing (Anderson et al., 2008; François et al.,

2004). If it can be assumed that the lithogenic fraction is of

eolian origin, EC can be derived from the 232Th concentra-

tion in the sediment of a dust proxy (232Th). As 232Th con-

centrations in dust are generally more than 1 order of mag-

nitude higher than in most volcanic materials, 232Th levels

closely track continental inputs and are insensitive to vol-

canic inputs. In addition, 232Th offers the advantage, com-

pared to other dust proxies, that its concentration in global

dust sources is relatively invariable and close to the up-

per continental crust concentration (McGee et al., 2007). If

non-eolian contributions (such as volcanic contributions) are

present, multi-proxy approaches (using REE, 4He) can pro-

vide a means to isolate the eolian fraction (Serno et al., 2014).

On continental margin settings, high sedimentation rates are

related to the presence of fluvial inputs, which can be iso-

lated from the eolian component by the use of grain size end-

member modeling (McGee et al., 2013; Weltje, 1997).

Bioturbation, i.e., surface sediment mixing by benthic

fauna, is a common unconstrained feature of marine sed-

iments that acts as a smoothing filter on the sedimentary

stratigraphy, including ages and other profiles of interest,

with a typical vertical smoothing scale of 8–10 cm. A few

studies have evaluated the potential effects of the bioturba-

tion of their records, although they do not correct their pro-

files (François et al., 1990; McGee et al., 2013), based on a

simple deconvolution linear model (Bard et al., 1987).

2.3 Loess–paleosol sequences

The possibility of reconstructing the global dust cycle re-

quires observations that are distributed geographically to

constrain different regions, and that also encompass the evo-
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lution of dust spread from the source areas to the areas down-

wind and to remote regions. Terrestrial sediment records are

therefore necessary to constrain the location and magnitude

of past sources of dust. Loess can be defined as terrestrial

eolian sediments, composed predominantly of silt-size parti-

cles, formed by the accumulation of wind-blown dust (Pye,

1995; Liu, 1985), and covering vast regions (∼ 10 %) of the

land masses (e.g., Derbyshire et al., 1995; Rousseau et al.,

2011). The formation of loess deposits is often associated

with the proximity of major dust sources, the availability of

fine-grained erodible sediments and adequate winds, and a

suitable accumulation site (Pye, 1995; Liu, 1985). This re-

quires that a complex deposition–erosion balance determines

the actual rate of accumulation at a site and the alternation

of accumulation and weathering phases depending on the

dominant environmental conditions (Kemp, 2001; Muhs et

al., 2003a). Loess–paleosol records (or soil profiles) span-

ning the late Quaternary have shown to be important proxies

and dust archives, both on glacial–interglacial (e.g., Kohfeld

and Harrison, 2003; Muhs et al., 2008; Lu and Sun, 2000;

Lu et al., 1999) and millennial timescales (e.g., Mason et al.,

2003).

Because of their nature, loess records are more challenging

to interpret than marine or ice dust stratigraphies in quan-

titative terms, but they hold great potential under favorable

circumstances. In the case of loess–paleosol sequences, the

assumption is often made that EC= 1 because the other

soil component, i.e., the organic matter content is usually

very low, i.e., < 1 % (e.g., Miao et al., 2007). Nonetheless,

in carbon-rich soils, where organic matter can be ∼ 10 %,

this contribution should be taken into account (Muhs et al.,

2013b). Therefore, the implication is that the dust MAR is

entirely determined by SBMAR=LSR ·DBD. Depending

on the study, DBD is either measured or assumed based on

literature surveys, which adds significant uncertainty to cal-

culations. The LSR is determined based on the age–depth

relation. For this compilation, focused on the Holocene, we

only consider profiles for which absolute ages (or more cor-

rectly, numerical ages) have been measured rather than rely-

ing on stratigraphic correlations.

Depending on the availability of suitable material at loess

sites, radiocarbon dating is carried out on different organic

components such as plant material (e.g., charcoal, plant, and

wood fragments) or Succineidae (land snails). Humic acid

is also utilized; however, this medium provides less reliable

dates. Scarcity of organic samples could be a limitation for

chronologies relying on radiocarbon dating. An alternative

category of methods for numerical dating of loess deposits

is the luminescence-dating group of techniques (Roberts,

2008). In particular OSL dating of quartz grains with the

single aliquot regenerative (SAR) dose protocol (Wintle and

Murray, 2006) is considered to be quite robust (Roberts,

2008).

Bioturbation by faunal burrowing is an active process

complicating the interpretations of soil profiles, as indicated

Figure 3. Conceptual plot of the evolution of dust deposition flux

(DF) and size distribution (% sand) as a function of distance from

the source.

by stratigraphic age inversions. In addition human activities

such as agriculture may cause significant perturbations to the

upper sections of soil profiles (Roberts et al., 2001). Ad-

ditional problems in the interpretation of soil profiles may

arise in cases where the origin of the loess is not primarily

eolian but rather the product or reworking of local deposits

(Kemp, 2001). We therefore did not consider sections from

areas where such occurrence was identified.

Even when a reworked origin can be excluded, it should

not be taken for granted that the DMAR=DF relation nec-

essarily holds in the case of loess deposits. Conceptually, we

can imagine the process of dust emission and deposition in

a regional setting as follows: dust emanates from a source

and starts to be deposited downwind at rates decreasing with

distance from the source (Fig. 3). A clear example of this

is evident in the maps showing the spatial variability in the

thickness of last glacial Peoria loess deposits in North Amer-

ica (Bettis III et al., 2003) or the loess deposition in the Chi-

nese Loess Plateau (CLP) (Liu, 1985; Lu and Sun, 2000).

Understanding the spatial scale of this process is essential.

Grain size data from sampling transects at various loca-

tions suggest that a sharp decrease in DMAR immediately

downwind of source areas is associated with a decrease in

the size distribution within 20–50 km Chewings et al., 2014;

Mason et al., 2003; Muhs et al., 2004; Winton et al., 2014),

before a slower decline in DMAR and size keeps on the

same trajectory on broader spatial scales (Ding et al., 2005;

Lawrence and Neff, 2009; Porter, 2001; Prins et al., 2007;

Sun et al., 2003). It is evident, then, that bulk DMARs (i.e.,

DMARs over the entire size range) from profiles located

within a very short distance (i.e., 20–50 km) from the sources
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are not suited for providing a representative estimate of DF

over a broad spatial domain unless the spatial scale of interest

is very fine (Cook et al., 2013). This has substantial impli-

cations for climate models and reconstructions of the mass

balance of the global dust cycle in general because a mis-

interpretation of the significance of bulk DMARs can drive

large overestimation of DF (Albani et al., 2014).

On the other hand, it happens that sites located in close

proximity to the sources have the highest accumulation rates,

allowing for better chances of obtaining high-resolution pro-

files that are of great utility in paleoclimate reconstructions.

Thus, often some of the better-resolved sites, especially those

having an adequate time resolution to show variability during

the Holocene, tend to be close to the sources.

After the steep decline in bulk DMAR close to the source

areas, we can imagine the DF blanketing the surface of the

Earth, slowly decreasing as the distance from the source in-

creases but approximately homogeneous over a broad area

at a coarse enough spatial resolution (Fig. 3). In reality the

DMAR is highly dependent on the local landforms, both for

accumulation and preservation of the deposited dust (Stevens

and Lu, 2009). Thus loess deposited on escarpments facing

the wind direction may be favorable for an enhanced dust

deposition (Bowen and Lindley, 1977; Mason et al., 2003).

More often erosion is a major player, so that DMAR < DF.

Upland sites are generally considered more suitable geomor-

phological settings to recover well-preserved profiles of DF

(Derbyshire, 2003; Kohfeld and Harrison, 2003; Mason et

al., 2003; Muhs et al., 2003a). Field examination of the broad

area where a profile was studied may provide evidence of

erosion (Lu et al., 2006), i.e., if the horizon’s stratigraphy

is not widely reproduced regionally, but in some cases evi-

dence for erosion is only available via detailed independent

age models (Buylaert et al., 2008; Stevens et al., 2008). In ad-

dition, supporting data from other proxies in the profile, i.e.,

bio- or chemostratigraphy, can provide grounds for establish-

ing the degree of coherence of specific sections (Marković et

al., 2011).

2.4 Other paleodust archives: lake sediments and peat

bogs

Beside loess–paleosol sequences other land archives carry

the potential to preserve dust stratigraphies: lakes and om-

brotrophic peat bogs. Both can be located at an opportune

medium-range distance between the source areas and the

more remote oceanic and polar sites. In addition, the preser-

vation of large amounts of organic matter involves the possi-

bility of high-resolution radiocarbon dating, which is of great

value especially for a period such as the Holocene (Muhs et

al., 2003b; Marx et al., 2009; Le Roux et al., 2012).

While diverse in nature, lakes and peat bogs also share

some common issues that generally need to be addressed

in order to provide reliable paleodust profiles: the possibil-

ity of quantitatively isolating remote from local dust deposi-

tion and the basin-scale representativeness of eolian DMARs

compared to DF.

In some circumstances (when fluvial inputs and rain out-

wash can be excluded), lake deposits can preserve reliable

dust stratigraphies, with little or no unconformities and rel-

atively abundant organic matter for radiocarbon dating (e.g.,

Muhs et al., 2003b). Maar lakes, developed in craters formed

by explosive excavations associated with phreatomagmatic

eruptions, are often an ideal setting when the mafic composi-

tion of the basin is substantially different than the mineralog-

ical and geochemical characteristics of the remotely origi-

nated dust. However, a major problem with lakes is the pos-

sibility of sediment focusing in the deeper parts of the basin,

which may substantially affect SBMAR. With one exception,

we were not able to retrieve adequate DMARs from lakes for

this compilation, mostly because of problems with either the

age model, or a reliable estimation of EC (Supplement).

In recent years substantial progress has been made in re-

covering dust profiles from ombrotrophic peats. The estima-

tion of SBMAR depends on the radiocarbon dating of the

organic matter. The EC is determined by the elemental com-

position of the residual ash after the combustion of the or-

ganic matter. The identification of an adequate proxy for dust

can be challenging (Kylander et al., 2013), so that several

approaches, including multi-proxy-based approaches, have

been suggested (Marx et al., 2009). Even more challenging

is a quantitative isolation of the local versus remote dust in-

put; this is also because of the lack of size distribution data

in most cases, although a few studies have provided good ap-

proaches (Marx et al., 2009; Le Roux et al., 2012). At this

stage, substantial uncertainties still exist in general in peat

bog dust records for one or more of the variables necessary

to determine a reliable quantitative estimate of dust MARs

relevant for medium- or long-range transport. Nonetheless,

we expect that in the near future this goal will be achieved

because of the fast progress of research in this field (e.g.,

Ferrat et al., 2011; Kylander et al., 2013; Marx et al., 2009;

McGowan et al., 2010; Le Roux et al., 2012; Sapkota et al.,

2007; De Vleeschouwer et al., 2012).

3 Methodology

The goal of this compilation is to provide a quality-controlled

data set with a specific reference to the possibility of deriv-

ing reliable quantitative time series of eolian DMAR relevant

to broad spatial scales. According to this principle and con-

sidering the specific characteristics of the different paleodust

archives, we performed an extensive literature review to iden-

tify records suitable for the study of dust variability within

the Holocene, encompassing the MH period ∼ 6 ka BP.

There is a spectrum of possible approaches for the compi-

lation of this kind of database, lying between two extremes:

a minimal collection of DMARs (e.g., similar to DIRTMAP;

Kohfeld and Harrison, 2001) and an extensive compilation
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including a wide variety of metadata (e.g., DIRTMAP3; Ma-

her et al., 2010). For this work, we lean towards the first

approach, although we include uncertainties and some ad-

ditional information, but stick to the age models from the

original studies (Appendix A).

The concise operational product of the database is a set

of dust MAR time series, with quantitative estimates of the

uncertainties associated with both the age and DMAR. Dust

MAR uncertainty quantified here is only associated with the

calculations; hence, it includes the analytical errors and the

uncertainty associated with assumptions or approximations

in the magnitude of specific variables. We express all quan-

titative uncertainties as 1σ deviation, assuming a Gaussian

distribution of the error. It will be expressed either in abso-

lute terms or as a relative error, as specified in each case.

This approach does not convey the overall uncertainty re-

lated, for instance, to a specific technique or to a specific

physical setting, which is difficult to express quantitatively.

For this reason we complement the data set with a categori-

cal attribution of the overall confidence on the reliability of

the records for the purposes of this work.

Note that a large part of the actual uncertainties associ-

ated with each record are related to what we include in the

attribution of the confidence level and that the estimates pro-

vided for the quantifiable uncertainty constitute a first-order

approximation.

In the following paragraphs we report the criteria fol-

lowed for site selection and attribution of a confidence level

(Sect. 3.1), and we provide a general description of the ap-

proach used to report or calculate the age profiles of eo-

lian DMAR, with relative uncertainties (Sects. 3.2 and 3.3),

and the information on the size distributions where available

(Sect. 3.4). More specific information for each record is re-

ported in the Supplement. In Sect. 3.5 we describe the ap-

proach to estimating the mass balance of the global dust cy-

cle throughout the Holocene with the CESM.

3.1 Site selection and attribution of confidence level

In an initial phase of scrutinizing the existing literature, we

identified paleodust records of interest to our project, based

on the requirements that they

(a) have potential for calculating DMAR (i.e., the dust frac-

tion must be identified and quantified in some way; no

records with only size information).

(b) have sufficient material within the Holocene to quantify

DMAR (i.e., at least three data points occur between

0 and 11.7 ka BP, with at least one data point between

4.5 and 7.5 ka BP; three data points means three ages

for loess–paleosol sequences where EC= 1 and three

values of dust MAR for all other cases).

(c) have absolute (i.e., numerical) ages (only for terrestrial

sediments).

(d) include size information (only for the loess–paleosol

records).

We identified 124 sites meeting these criteria. We then la-

beled each of those sites with a categorical attribution of the

overall confidence we have that each record provides a quan-

titative profile of eolian DMAR with respect to the age and

that it is relevant to broad spatial scales, based on general

consensus.

The attribution of the confidence level is based on whether

or not there are substantial or critical uncertainties with re-

spect to three aspects: (1) SBMAR (and confidence that

DMAR=DF); (2) EC; (3) quantitative distinction between

remote and local EC (see Supplement Table 1).

The first criterion is related to the chronology itself and/or

to linking the chronology to SBMAR. We consider some

types of dates more reliable than others in this context, de-

pending on the kind of natural archive. Among the less re-

liable, some we consider acceptable per se (“substantial un-

certainty”), while others we associate with a “critical uncer-

tainty”.

For marine sediments, we consider both absolute ages and

stratigraphic correlation with oxygen stacks, bearing in mind

that they are both acceptable in the case of records based on

thorium profiling, but only absolute ages are acceptable when

the isolation of the terrigenous fraction is the method of de-

termining EC.

For ice cores, we regard age models based on a combina-

tion of absolute counting, stratigraphic correlations, and ice

thinning modeling (e.g., Veres et al., 2013) with high confi-

dence. These models apply to most of the polar ice cores. On

the other hand, records from smaller ice caps and glaciers

suffer from the lack of reliable age models, i.e., ice accu-

mulation profiles, which cannot be resolved on Holocene

timescales at present (L. Thompson, P. Gabrielli, C. Zdanow-

icz, personal communication, 2014).

For terrestrial sediments, we only considered numerical

ages (OSL, 14C), in the initial scrutiny phase. This is im-

portant as, in the case of loess–paleosol sequences, distur-

bances such as erosion and reworking (and agricultural prac-

tices, when they are not limited to depths attributed to the

last ∼ 2.5 kyr) can disrupt the ideal correspondence between

dust MAR and DF (Sect. 2.3). We consider evidence of such

an occurrence as a critical uncertainty. In addition, we have

attempted to identify sites whose stratigraphies are consis-

tent regionally and therefore demonstrate that they are more

likely to represent large-scale patterns. Sites with stratigra-

phies that diverge substantially from standard regional pro-

files suggest that these records are not likely to represent

large-scale patterns in dust deposition, and this represents a

critical uncertainty. When no critical uncertainties are iden-

tified, we still consider that SBMAR estimates from loess–

paleosol sequences contain substantial uncertainty, accord-

ing to this criterion (1).
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The second criterion relates to the ability of a quantitative

determination of the EC.

For marine cores, we rely on the original and subsequent

authors’ evaluation of contamination, e.g., the possibility of

non-eolian inputs, such as from sediment focusing, volcanic,

fluvial, hemipelagic, and ice-rafted materials. Marine records

that are definitely or very likely to be affected by unac-

counted for non-eolian inputs are rated as having critical un-

certainty. These include sites in regions that have been iden-

tified as being affected by non-eolian inputs, such as the vol-

canic materials and ice-rafted detritus in the North Pacific

(Serno et al., 2014), volcanic inputs in the eastern equato-

rial Pacific (Olivarez et al., 1991), possible non-eolian detri-

tus in the western Pacific Ontong Java Plateau (Kawahata,

1999), or sediment focusing and ice-rafted debris (IRD) in

the Southern Ocean (Kohfeld and Harrison, 2001). When the

possible presence of non-eolian components is more specu-

lative, we attribute a substantial level of uncertainty. In ad-

dition, estimates of EC made using quartz concentrations or

elemental (e.g., Al) proxies were rated as having substantial

uncertainty. Records based on 232Th, the experimental isola-

tion of eolian components, or a differencing method (EC= 1

−CaCO3 − opal−Corganic) to determine EC were preferred.

For ice cores, primary non-eolian inputs to the insoluble

particle material are volcanic in origin and can usually be sin-

gled out and selectively removed from the records (Narcisi et

al., 2010). In some cases though, they may be a widespread

presence in a record (Gabrielli et al., 2014), which we con-

sider cause for the attribution of substantial uncertainty. We

consider particle counters the more robust methods for the

determination of EC. Uncalibrated (for the size) laser coun-

ters give unreliable results, as both the size distributions and

the EC may be significantly affected, which we consider a

critical uncertainty. Among the 124 records initially selected,

a few ice core records rely on calcium as a proxy for dust.

Subtleties include the fact that total calcium is a worse proxy

than non-sea-salt (nss) calcium and that calcium in general is

a better proxy in Greenland than in Antarctica because of the

proportions of crustal versus nss-Ca in the two cases, with

sea salt deposition 1 order of magnitude higher than dust in

Antarctica but much lower in Greenland (Ruth et al., 2002,

2008). We simply assume a substantial uncertainty for all

records based on calcium.

For terrestrial records, we attribute substantial uncertainty

to the presence of non-eolian inputs, as identified by authors.

We attribute substantial uncertainty when an elemental proxy

was used for the determination of EC rather than relying on

the sedimentation rate of the eolian sediment or the residual

fraction after the elimination of non-eolian inputs. A critical

uncertainty is attributed to the use of quartz as a quantitative

proxy for EC.

The third criterion focuses on the quantitative and size-

resolved separation of local versus remote dust.

This criterion in fact does not apply to loess–paleosol se-

quences, where instead we applied constraints on the ne-

cessity of size information. For the other types of natural

archives, all the other records that we found to be most likely

affected by unaccounted for local dust inputs are rated as hav-

ing critical uncertainty. When the possible presence of local

dust inputs is likely, but more speculative, we attribute a sub-

stantial level of uncertainty.

Records that meet all criteria are labeled with “high con-

fidence”, whereas failing to meet one criterion results in

a record receiving the attribution of “medium confidence”

level. A record is given a low level of confidence when either

(a) two or more aspects are considered to be affected by sub-

stantial uncertainty or (b) even just one aspect is considered

to be a critical uncertainty. We only included those records in

the compilation (45 out of 124) that have high and medium

confidence levels (Table 1; Supplement).

3.2 Ages and chronologies

All the ages reported in this compilation are expressed in

thousands of years before 1950 AD (ka BP). We do not re-

derive the age models for the records in this compilation but

use the original chronologies reported in the relevant publi-

cations. This is the case for all records included in this com-

pilation. The only exceptions are the case of the Antarctic ice

cores, which have been reported according to the AICC2012

chronology (Veres et al., 2013), and a specific approach for

loess–paleosol sequences described below.

In Sect. 3.1, we explained how loess–paleosol sequences

with a medium confidence level satisfy the condition of

being representative of large-scale patterns. This is based

on the possibility of grouping them within subregional set-

tings where sequences exhibit a common stratigraphy. These

groups should also account for spatial variability in the tim-

ing of the onset of climatic conditions that are linked to spe-

cific loess–paleosol subunits, e.g., on the CLP. When pos-

sible (i.e., for the records in the western CLP: Duowa and

Jiuzhoutai), we constructed SBMAR records for those sites,

based on selecting (or interpolating in the case of Duowa;

see Supplement) only the dates at the interface between

two consecutive subunits, in fact reflecting the alternation of

soil and loess subunits (S0.S1–S0.L1–S0.S2–S0.L2–S0.S3).

We consider this as a slightly conservative approach, which

has the advantage of (a) limiting potential abrupt fluctua-

tions in DMARs, which may just be reflecting dating errors

(e.g., related to bioturbation), and (b) pairing the records to

some extent, consistently with the criteria mentioned earlier.

Note that a similar approach was used for the two loess–

paleosol sequences from Nebraska included in this compila-

tion (Wauneta, Logan Roadcut). For Jingyuan and the central

CLP (Beiguoyuan, Xifeng, Luochuan, Weinan), no such dis-

tinction of subunits within the Holocene paleosol (S0) is vis-

ible; thus, the time series are based on all the available dates.

The same holds for the one single site in Alaska (Chitina).

In the previous section we discussed how either a linear or

a more sophisticated age model is used to determine a pro-
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file’s chronology. Each numeric age or tie point is character-

ized by some uncertainty. The nature and magnitude of the

error depend on the specific technique and include the analyt-

ical error, and the calibration or wiggle-matching error when

applicable. We try to estimate this type of uncertainty quan-

titatively. Unquantifiable uncertainties include the effects of

bioturbation, sample contamination, etc.

Age uncertainties that can be estimated arise from three

different processes: (1) experimental error in a measurement

(e.g., 14C, OSL); (2) calibration errors (e.g., 14C calibra-

tion software, OSL measurement in water content); (3) other

age-model uncertainties. For instance, radiocarbon dating re-

quires corrections to account for the carbon reservoir effect

(Brauer et al., 2014). Calibration software has been devel-

oped to perform this task (e.g., Bronk Ramsey, 1995; Reimer

et al., 2009). All radiocarbon ages reported in this paper are

calibrated, according to the original references.

In the case of age models more complicated than the sim-

ple linear relation used to derive an LSR, errors associated

with ages are usually reported in the publications. An ex-

ample of this are the new ice core chronologies, such as

AICC2012, which report the associated age uncertainties

(Veres et al., 2013).

For a linear sedimentation model, the age of a given depth

horizon is calculated by linear interpolation between two

dated horizons. In this case the age error of the samples

is bound to the uncertainties associated with the bracketing

ages. The age-model error of the sample can then be derived

through the error propagation formula:

εsample =

√
ε2
a + ε

2
b, (1)

where εa and εb are the age errors of the two adjacent dated

points between which the linearly interpolated sample age

was calculated.

The other usual possibility is that the age model of a site

was determined without the help of any absolute age marker,

but just by using stratigraphic correlation. A typical example

of such an age model is one based on stratigraphic correla-

tion of a marine sediment core site’s δ18O profile with the

SPECMAP stack (Imbrie et al., 1984). In this case and in all

other circumstances where the age error is not reported, we

arbitrarily assume an uncertainty of 6.8 % (1σ , correspond-

ing to an overall 10 %).

3.3 Eolian dust MARs

Dust MARs constitute the key element of this compilation.

We previously discussed (Fig. 2) the nonparallel depth reso-

lution of the age samples and the EC samples. Unless stated

otherwise, we always use a chronology targeted at the final

DMAR resolution, which is determined ultimately by the EC

resolution (see also Fig. 1). The typical exceptions are loess–

paleosol sequences, where SR alone (hence the resolution of

the age samples) determines the dust MAR.

We report both the SBMAR (or SR and DBD) and EC for

each point in the records, with relative uncertainties. The un-

certainties are taken from the original sources when available

and assigned otherwise. The dust MAR uncertainty is deter-

mined from the relative uncertainties in the factors SBMAR

and EC, combined through the error propagation formula:

εMAR =

√(
εSBMAR

µSBMAR

)2

+

(
εEC

µEC

)2

, (2)

with εSBMAR/EC and µSBMAR/EC representing the absolute

errors and the absolute values, respectively.

In this compilation, there are two cases when SBMAR

is provided directly instead of being the combination of

SR ·DBD: ice cores and marine sediment records derived us-

ing the thorium profiling method. In the case of ice cores

SBMAR corresponds to the ice accumulation rate, expressed

in meters (water equivalent) per year, which incorporates in-

formation about ice density and thinning with depth (Alley,

2000; Veres et al., 2013). When it is not reported, we as-

sume that the relative uncertainty is the same as that of the

age uncertainty. This is a reasonable approximation for the

Holocene records from the ice cores presented here, but sig-

nificantly larger uncertainties related to ice thinning models

should be considered for deeper sections of ice cores and for

glacial stages (Kindler et al., 2014). For marine cores, we

consider the relative uncertainty in the thorium excess (xs-

Th) parameter. When it is not reported, we assumed a rela-

tive uncertainty of 5 %, assigned based on an expert informed

guess.

In all other cases, for SR we consider that the relative un-

certainty is the same as the age uncertainty, which again is

combined, through the error propagation formula with the

other uncertainties. DBD is sometimes measured but often

just assumed, based on the literature from the broader region.

When no information was reported in the original works, we

assumed a dry bulk density of 1.48 g cm−3 for the CLP (Ko-

hfeld and Harrison, 2003) and 1.45 g cm−3 for North Amer-

ica (Bettis III et al., 2003). When not measured, we assumed

a 15 % relative uncertainty for DBD (Kohfeld and Harrison,

2003).

With the exception of loess, for which we assume EC= 1

unless otherwise stated, EC is either expressed in terms of the

fraction or concentration of dust or a proxy in the bulk sedi-

ment. For the Antarctic ice cores considered in this compila-

tion, the EC is determined according to the volume dust con-

centrations determined by a Coulter counter; the mass con-

centration is calculated by multiplying the volume with the

assumed dust density of 2.5 g cm−3 (Delmonte et al., 2004).

The uncertainty in this case is taken from the standard de-

viation of the ∼ three replicate measurements. When a dust

proxy is used instead to determine the EC, its concentration is

divided by the element’s typical abundance in dust (or crustal

abundance). In this case the analytical uncertainty (if not re-

ported, we assume 5 %) is combined with the uncertainty of
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the dust proxy, i.e., the variability in its amount in dust. We

keep the proxy–dust relation from the original studies when

available.

Several records in this compilation use 232Th as a dust

proxy, for which we assume 10.7 ppm in dust (McGee et al.,

2007) if not specified otherwise in the original papers. We

always assumed 9.3 % uncertainty for 232Th as a dust proxy

(McGee et al., 2007) or a combined uncertainty of 15 %

when the analytical uncertainty was not available. In one case

(GISP2), we used calcium as a dust proxy (Mayewski et al.,

1997), assuming a variable calcium–dust relation in Green-

land with respect to changing climate conditions, resulting in

26 % calcium in dust (Ruth et al., 2002; Steffensen, 1997),

with an arbitrarily assigned uncertainty of 20 %.

When the isolation of the detrital component from the sed-

iment matrix is done by the removal of carbonates, opal, and

organic matter, then the EC can be estimated from the bulk

terrigenous component. We assume 5 % uncertainty in this

procedure.

We stress once again that the quantitative uncertainties es-

timated here do not fully represent the overall uncertainty of

a record, which should be considered in combination with

the confidence level (Table 1).

3.4 Dust grain size distributions

Here, we focus on the importance of the grain size informa-

tion and its close link to the DMAR. When possible, we re-

trieved the size distributions associated with the records in

this compilation. Depending on the technique used, the size

data was collected in the form of size distributions (e.g., by

particle counters and laser particle analyzer) or size classes

(using the sieve and pipette method), e.g., the percentages of

sand, silt, and clay (Muhs et al., 2013; Lu et al., 1999).

Despite the differences and uncertainties associated with

specific methods (Mahowald et al., 2014; Reid, 2003), we

include the available information according to the original

sources. In the case of size classes, we report the informa-

tion as provided in the original papers. In addition, we take

an innovative approach to organizing the size distribution

data. First of all, we carry the original size distributions to a

new, common binning in order to enhance the accessibility of

the data and to facilitate the intercomparison among records.

Second, we associate the size distributions with the DMAR

time series sample-to-sample where possible so that DMAR

time series for different size ranges can be easily determined.

The re-binning procedure to adapt the original size dis-

tributions from observations is organized in a series of steps:

(1) definition of a new binning model; (2) building the cumu-

lative distribution from the normalized observations; (3) fit-

ting a spline curve to the observation cumulative distribu-

tion; (4) integration of the fitted spline curve into the new

bins; (5) evaluation and summary of the fit of the new binned

data to the original observations. The fitting spline in (3) is

bounded to have values between 0 and 1 and to be monoton-

ically nondecreasing.

One challenge in finding a new binning model is to avoid

significant distortion to the original size distribution, given

that observations have both a different resolution and a dif-

ferent size range. A compromise is necessary to preserve

both the actual dust flux (i.e., a size range wide enough to

include most observations) and the shape of the distributions.

The preservation of the size distribution properties, i.e., the

mass partitioning across the size spectrum, requires an ad-

equate number of bins and adequate spacing. We adopted

a new bin model with n= 76 bins, spanning the interval

of particle diameters between 0.28 and 208.34 µm. The bin

spacing is defined by a monotonically increasing function:

y= 0.089 · x+ 0.002, where x is the nth bin center, y is

the (n+ 1)th bin center, and x0= 0.35 µm (first bin center).

Bin edges are calculated by linear interpolation, halfway be-

tween two consecutive bin centres. This binning model is

very similar to the instrumental size binning of, e.g., Mulitza

et al. (2010) or McGee et al. (2013), in the same size range.

For all samples subject to re-binning, visual inspection of the

original and new distributions as well as the production of

objective metrics (Supplement) were performed,.

All references to size in this work refer to the particle’s di-

ameter. We always refer to volume or mass size distributions,

both in the main text and the Supplement.

3.5 Modelling the global dust cycle

Paleodust records not only represent excellent climate prox-

ies, but they also offer the possibility to quantitatively con-

strain the mass balance (or magnitude) of the global dust

cycle. Here, we use a dust model to extrapolate the avail-

able data to allow global coverage for the deposition, as

well as estimates of sources, concentrations, and aerosol op-

tical depth using the Community Earth System Model (Al-

bani et al., 2014; Mahowald et al., 2006, 2011). To represent

the impact of climate variability during the Holocene on the

dust cycle, we chose two reference periods for our simula-

tions with the CESM: the MH (6 ka BP) and the preindus-

trial (1850 AD), which we assume to be representative for the

early and mid-Holocene (5–11 ka BP) and the late Holocene

(1–5 ka BP) respectively, based on the first-order differences

in orbital forcing and climate in the two periods (e.g., Wanner

et al., 2008). The initial conditions for the MH simulations

are taken from a fully coupled climate equilibrium simulation

for 6 ka BP (http://www.cesm.ucar.edu/experiments/cesm1.

0/#paleo), which follows the PMIP3 prescriptions for green-

house gas concentrations and orbital forcing, with preindus-

trial prescribed vegetation (Otto-Bliesner et al., 2009), and

which was part of the PMIP3–CMIP5 (Coupled Model In-

tercomparison Project Phase 5) model experiments for the

IPCC Fifth Assessment Report (AR5) (Masson-Delmotte et

al., 2013; Flato et al., 2013). For the preindustrial simulation
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we take the initial conditions from an equilibrium reference

simulation described in Brady et al. (2013).

The dust model integrated into the CESM used for this

study uses the Community Atmosphere Model version 4 with

a Bulk Aerosol Model (CAM4–BAM) and is described in

detail in Albani et al. (2014). The dust model simulates dust

emission, transport, dry and wet deposition, and direct inter-

actions with radiation in the long- and shortwave spectrum.

The dust mass is partitioned into four size classes spanning

the 0.1–10 µm diameter range. Modeled dust emissions are

primarily a function of surface wind speed, vegetation (and

snow) cover, and soil erodibility, which is a spatially vary-

ing parameter summarizing the differences in susceptibility

to erosion related to, e.g., soil textures and geomorphology

(Zender et al., 2003).

Although the physical model does not include changes in

vegetation, following the PMIP protocols (Otto-Bliesner et

al., 2009), we accounted for different vegetation cover in

the MH by removing the online dependence of dust mo-

bilization on preindustrial vegetation. For the 6 ka BP equi-

librium climate, we instead simulated new vegetation cover

with the coupled biogeography and biogeochemistry equi-

librium model (BIOME4) (Kaplan et al., 2003), following

the methodology of Mahowald et al. (2006). The effects of

vegetation were incorporated into the soil erodibility map by

applying a scale factor to each grid cell, proportional to the

fraction of the grid cell available for dust emission in arid

areas (same as for the LGM in Albani et al., 2014). We also

accounted for glaciogenic sources in Alaska, which are not

explicitly simulated by the model, by prescribing them ac-

cording to Albani et al. (2014) and Mahowald et al. (2006).

In addition, we relaxed the dampening effect of vegeta-

tion cover on dust mobilization in the model in one spe-

cific region, i.e., the Nebraska Sand Dunes, to account for

a known dust source relevant for the Holocene (Miao et al.,

2007). In that region, too much vegetation cover from the

prescribed input data sets would otherwise inhibit dust mo-

bilization both for the preindustrial and MH simulations.

We provided observational constraints on the model dust

deposition flux by considering the dust MAR from the data

compilation, limited to the model’s size range, i.e., < 10 µm:

we considered only the relevant fine fraction from the new

binning. For each record we calculated MAR time series

during 2 ka long time intervals centered on 2, 4, 6, 8, and

10 ka BP by averaging the original data across each of the

macro-regions (Fig. 4). Linear interpolation was then used to

fill in the gaps.

The model’s fit to the observations was improved through

a spatial optimization of the soil erodibility by applying a

set of scale factors specific to macro-areas, which is reflected

in dust mobilization from those macro-areas (Albani et al.,

2012b, 2014; Mahowald et al., 2006, 2010, 2011). We ap-

plied this procedure to preindustrial and MH simulations

constrained by the data in the 4 ka BP and 6 ka BP time slices,

respectively. In order to account for dust variability in the

Figure 4. Upper panel: subdivision of the globe into different ar-

eas, based on the spatial distribution of data in this compilation (0:

Alaska; 1: Greenland; 2: northern Africa and North Atlantic; 3: Ara-

bian Sea; 4: North America; 5: eastern Asia and North Pacific; 6:

equatorial Pacific; 7: South Atlantic; 8: Antarctica; 9: Australia).

Bottom panel: time series (at a 2 kyr interval) of the dust deposition

anomaly with respect to (wrt) 6 ka BP for the different areas, as es-

timated from the observations. Color-coding of the different areas

is consistent between upper and lower panel.

other time periods (2, 8, and 10 ka BP), we linked them to

the respective reference case for the late (4 ka BP) and mid-

to late Holocene (6 ka BP) by prescribing an additional set

of scale factors for dust emissions in the same model macro-

areas. Those scale factors are expressed as anomalies in re-

lation to the reference period and are determined based on

the observations: each time series in the compilation at the

2 kyr interval was reduced to an anomaly with respect to its

value at 6 ka BP (and 4 ka BP in parallel); then, a regional

average anomaly was calculated within specific regions de-

termined based on the geographical distributions of the ob-

servations (Fig. 4). We assume that emissions in each of the

model macro-areas are related to observations from specific

geographic regions, which act as sinks for dust originating

from each dust source macro-area (Mahowald et al., 2010).

The anomaly in dust emissions was then calculated as the

average of the anomalies from the group of forcing regions
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Table 2. Dust source areas in the CESM model and scale factors expressed as anomalies with respect to a reference period, derived from the

observations. The first column lists the model dust source areas. The second column gives the geographical regions where observations are

clustered; these are used to scale the dust from the corresponding model macro-areas. The reference periods are 4 for 2 ka BP, and 6 ka BP

for 8 and 10 ka BP.

Source area Anomaly forcing regions 2 ka BP 4 ka BP 6 ka BP 8 ka BP 10 ka BP

Alaska 0 0.6224 1 1 1.0800 1.3381

North America (southwest) 4, 6 0.8961 1 1 0.8810 0.9452

North America (Midwest) 4 1.0081 1 1 0.9929 0.9481

Northern Africa 2 1.3350 1 1 1.0030 1.5563

Central Asia 3, 1 0.9628 1 1 1.1448 1.1448

Eastern Asia 5, 1 1.0257 1 1 1.0304 1.0720

South America (northern regions) 7, 8, 6 0.7396 1 1 1.1093 1.3482

South America (Patagonia) 7, 8 0.9995 1 1 1.1358 1.2313

South Africa 7, 8, 9 0.9777 1 1 1.1898 1.2764

Australia 9, 8 0.9723 1 1 0.5183 1.4452

Figure 5. Overview of the data compilation. Central plot: global overview of the location of the paleodust records. Color indicates the

confidence level (red: high confidence; blue: medium confidence). Marker’s shape indicates whether size distributions or classes are available

(filled circles: yes; empty diamonds: no). Framing plots: time series of bulk dust MAR in the different areas, normalized to their Holocene (0–

12 ka BP) average (red solid line for reference, which represents the time span over which DMARs were averaged in the original DIRTMAP;

Kohfeld and Harrison, 2001). Black solid lines represent high-confidence records; gray lines identify medium-confidence records. Records

are plotted in the 0–22 ka BP interval to allow a comparison with DIRTMAP3 (Maher et al., 2010) data (as reported in Albani et al., 2014),

represented by their glacial–interglacial ratio (green solid circles). Vertical color shading bands highlight the last millennium (pink), the MH

(5–7 ka BP, salmon), and the Last Glacial Maximum (18–22 ka BP, light blue).

(Table 2). We acknowledge that this simple procedure im-

plies possible discontinuity at the 4 to 6 ka BP transition.

4 Holocene dust variability

4.1 Global overview

A total of 45 high- and medium-confidence paleodust records

(out of 124) from ice and terrestrial and marine archives dis-
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tributed worldwide comprise the data compilation (Fig. 5).

It is noteworthy that, while in a few regions there is a rel-

ative abundance of observations (North Atlantic, equatorial

Pacific), there are few data from other parts of the world

(North Pacific, Southern Hemisphere) after the application

of filtering criteria.

The amplitude of bulk dust variability recorded from nat-

ural archives during the last 22 kyr relative to their Holocene

average allows a comparison with the DIRTMAP3 (Maher

et al., 2010) data with regard to the glacial–interglacial vari-

ability within several regions around the globe (Fig. 5).

Different regions show different patterns of variability dur-

ing the Holocene (e.g., the apparent low degree of variability

in the equatorial Pacific versus the mid-Holocene minimum

in the North African Margin), and even within certain regions

there may be significantly diverse trends, which will be dis-

cussed in more detail in the following sections.

4.2 Northern Africa and North Atlantic

The most striking display of variability during the Holocene

is shown by the cores from the northwestern African Mar-

gin (5 records), with an amplitude comparable to glacial–

interglacial variability (Fig. 5) (Adkins et al., 2006; McGee et

al., 2013). As first suggested by deMenocal et al. (2000), this

would be a clear mark of the significant changes in the cli-

matic conditions in northern Africa between the wetter early

to mid-Holocene compared to the drier late glacial and late

Holocene. During the so called “African Humid Period” in

the early to mid-Holocene, greening of the Sahara occurred,

i.e., changes in vegetation in response to increased humid-

ity and precipitation, as seen in pollen records and lake level

changes (e.g., Hoelzmann et al., 1998; Jolly et al., 1998;

Street-Perrott and Perrott, 1993). The cause of these changes

has been identified as an enhanced summer monsoon, driven

by changes in orbital forcing, sea surface temperature, and

vegetation (e.g., Braconnot et al., 2007; Claussen et al., 1999;

Kutzbach and Liu, 1997).

Figure 6 shows the large range of values (spanning 2 or-

ders of magnitude) encompassed by the DMAR estimates

from marine sediment cores to the west of the African coast.

Records from the equatorial Atlantic (lower temporal resolu-

tion) tend to show decreasing trends from the early to mid-

Holocene, with little or no variability afterwards (Bradtmiller

et al., 2007; François et al., 1990), compared to the sites

on the northwestern African Margin (higher temporal reso-

lution) that show a minimum in DMAR in the ∼ 5–9 ka BP

period (McGee et al., 2013).

The absolute values of bulk DMARs (dotted lines) are

higher for the sites close to the coast of northwestern Africa

(bluish colors) compared to the sites in the equatorial At-

lantic (reddish and greenish tones). When considering only

the fine fraction (< 10 µm: solid lines), three (out of five)

records from the northwestern African Margin are compa-

rable in magnitude to those in the equatorial Atlantic, at least

Figure 6. Detailed view of the dust records in the northern Africa–

North Atlantic region. Upper panel: geographical location of the pa-

leodust records. Bottom panel: time series of the bulk (dotted lines)

and “fine”, i.e., < 10 µm (solid lines), dust MARs. Color-coding is

consistent between upper and lower panel. Vertical grey solid lines

mark the subperiods within the Holocene as described in Sect. 3.4 at

an interval of 2 kyr. Please refer to the descriptive sheets in the Sup-

plement for a graphical display of the uncertainties for each record.

for the early to mid-Holocene, although they tend to be larger

in the late Holocene. On the other hand, two of the records

display very low values of DMARs, lower than the records

from the equatorial Atlantic, and are comparable to the equa-

torial Pacific.

Core top bulk dust MARs from northwestern African Mar-

gin cores match very well with modern sediment trap data

(Ratmeyer et al., 1999). On the other hand there is sub-

stantial uncertainty in the attribution of the fine fractions,

with records in the equatorial Atlantic loosely constrained

by present-day sediment trap data from the Cape Verde area

(Ratmeyer et al., 1999) and size data for the northwestern

African Margin based on actual measurements from sedi-

ment samples but relying on end-member modeling for the

separation between riverine and eolian inputs (McGee et al.,

2013).

This compilation and comparison suggests that there is

still a substantial knowledge gap in the area and ample space
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to debate the causes of the differences in magnitude and

trends between the records from the northwestern African

Margin and the equatorial Atlantic. For instance, there could

be differences related to shifts in the position of the ITCZ

in relation to the dust plume or related to differences in the

interpretation of the data, in particular with reference to the

grain size distributions and potential non-eolian components;

this would have implications for the spatial representative-

ness of the records.

4.3 Arabian Sea

Marine sediments from the Arabian Sea are of great value, as

they provide a rare opportunity to gather information about

past dust variability from the Middle East and central Asia,

about which little is known despite this arid belt being one of

the major dust sources worldwide (Prospero et al., 2002). The

most relevant climatic feature in the region is the seasonality

related to the onset of the southwestern Indian monsoon. The

largest dust activity in the region is from summer dust emis-

sions from Mesopotamia and the Arabian Peninsula, which

are thought to constitute the major dust sources at present for

the Arabian Sea, although contributions from Somalia and

Iran and Pakistan may be important (Prospero et al., 2002).

We report data from the cores RC-27-42 and 93KL, recov-

ered from the central Arabian Sea (Pourmand et al., 2007)

and the Little Murray Ridge in the northeast (Pourmand et

al., 2004), respectively. There are no clear common trends

between the two records, which indeed show very different

DMARs, 1 order of magnitude apart (Fig. 7). There is little

information to explain the difference in magnitude, which is

perhaps related to different sources, although possible fluvial

inputs to 93KL cannot be conclusively ruled out. There is

clear evidence that dust grains larger than 10 µm are present

in the Arabian Sea sediments (Clemens and Prell, 1990;

Clemens, 1998; Sirocko et al., 1991). The fine-fraction ra-

tio for the two records is a rough approximation common to

both records (Table 1).

4.4 North America

Evidence of dust deposition and accumulation during the

Holocene in North America is widespread and mainly linked

to loess deposits in the mid-continent (Bignell loess), partic-

ularly in Nebraska (Mason et al., 2003; Miao et al., 2007),

Kansas (Feng et al., 1994), North Dakota (Mason et al.,

2008), and eastern Colorado (Muhs et al., 1999; Pigati et al.,

2013). Most areas are characterized by relatively low thick-

ness, so that low temporal resolution does not allow assess-

ing Holocene variability, with the exception of a few sites in

Nebraska (Miao et al., 2007).

Unlike the other areas where loess origin is related to lo-

cal river systems, loess deposits in Nebraska have their im-

mediate sources in the extensive dune fields to the northwest.

Changes in the climatic conditions affecting vegetation cover

Figure 7. Same as Fig. 6 but for the Arabian Sea region.

have the potential to loosen or stabilize the dunes, altering

their potential as dust sources (Miao et al., 2007).

Well-studied sites at Wauneta have very high temporal res-

olution due to the high DMARs and allowed the identifica-

tion of different phases of dust accumulation and pedogen-

esis during the Holocene. The high accumulation rates are

related to the location, on the edge of tableland escarpments

facing the immediate source areas of the dust. The accumu-

lation rate drops off drastically in the downwind direction

from these sites; for example, the ∼ 6 m of Holocene loess

in the Old Wauneta Section thins to a little over 1 m within a

few hundred meters downwind, where a rather uniform loess

mantle covers the upland sites (Jacobs and Mason, 2007; Ma-

son et al., 2003). Another site to the northeast (Logan Road-

cut) shows lower bulk DMAR but similar phasing, associated

with the sequence of pedostratigraphic horizons (Miao et al.,

2007). When accounting for the size information, i.e., when

focusing on the fine-fraction DMARs, both the absolute val-

ues of DMAR drastically decrease and become comparable

in magnitude (Fig. 8). This suggests that the fine-fraction

DMARs (rather than bulk DMAR) can be considered more

representative of accumulation rates over large areas.

4.5 Alaska

Dust activity in Alaska has been reported for both the present

day (Crusius et al., 2011) and the past, in glacial and in-
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Figure 8. Same as Fig. 6 but for the North American region.

terglacial times (Muhs et al., 2003a). Dust in Alaska is of

glaciogenic origin, i.e., results from the formation of loose

sediments characterized by fine particles, produced by the

abrasion of the surface sediments or bedrock by ice and re-

leased onto river or stream outwash plains during the melting

season (Bullard, 2013).

Loess deposits of Holocene origin have been identified in

central (Begét, 1990) and southern Alaska (Muhs et al., 2004,

2013b; Pigati et al., 2013). The only site with high temporal

resolution and numerical dating is the Chitina Section in the

Wrangell–St. Elias National Park (Muhs et al., 2013b; Pi-

gati et al., 2013). The high bulk DMAR (Fig. 9) suggests

that the dust sources (attributed to the Copper River Basin)

lay very close. This notion is supported by the coarseness of

grain size data, comparable to analogous data from sites in

the Matanuska Valley, which are located within 10 km of the

putative source (Muhs et al., 2004).

Another record with Holocene temporal resolution is from

a maar lake (Zagoskin Lake, on St. Michael Island) in

western Alaska, which is thought to be representative of

proximal but not strictly local sources (Yukon River Val-

ley), as also shown by the grain size (Muhs et al., 2003b).

When the fine fraction of DMAR is considered, the Chitina

Section and Zagoskin Lake show a comparable magnitude

(Fig. 9), which, we observe, is rather large from a global per-

spective. While this indicates that dust deposition into the

Alaskan Gulf and other surrounding seas is probably rel-

atively large (Crusius et al., 2011), it is difficult to assess

whether the spatial extent of Alaskan dust sources is such that

the region is a quantitatively relevant source for dust in the

high latitudes (Bullard, 2013; Muhs et al., 2013b). Geochem-

ical tracer studies in the North Pacific may provide some

clues (Serno et al., 2014).

4.6 East Asia and North Pacific

The deserts in western and northern China are major global

dust sources with relevance for the mid- and high latitudes of

the Northern Hemisphere (e.g., An et al., 1991; Lu and Sun,

2000; Bory et al., 2003; Prospero et al., 2002). The most stun-

ning evidence of eastern Asian dust history in the Quaternary

and beyond in response to orbital forcing lies in the thick de-

posits of the Chinese Loess Plateau (CLP), which covers ex-

tremely vast areas of the upper and middle reaches of the Yel-

low River to the southeast of the Badain Juran, Tengger, and

Ordos deserts (e.g., Ding et al., 2005; Kohfeld and Harrison,

2003; Kukla and An, 1989; Porter, 2001). In relation to the

vastness of the CLP, different climatic forcing mechanisms

may have interacted in a varying fashion in different regions

in response to changes related to the monsoon system (Cos-

ford et al., 2008; Dong et al., 2010), including in the extent

or activity of the source areas (e.g., Lu et al., 2013, 2010); in

transport, i.e., wind strength and/or seasonality (e.g., An et

al., 1991; Ding et al., 2005); and in climatic conditions con-

trolling the balance of pedogenesis and loess accumulation

(e.g., Jiang et al., 2014).

Despite several studies conducted on the CLP, few abso-

lutely dated records exist that have a Holocene temporal res-

olution (Kohfeld and Harrison, 2003; Roberts et al., 2001),

with some additions in more recent years (Stevens et al.,

2006, 2008; Stevens and Lu, 2009; Lu et al., 2006, 2013).

In many areas agricultural practices carried out for at least

the last ∼ 2.5 kyr complicate the interpretations of the up-

per parts of several loess–paleosol sequences (e.g., Roberts

et al., 2001). We selected two sites with loess–paleosol se-

quences from the western CLP: Duowa (Maher et al., 2003;

Roberts et al., 2001) and Jiuzhoutai (Kohfeld and Harrison,

2003; Sun et al., 2000). The two sites show the same se-

quence of pedostratigraphic succession of loess and paleosol

subunits (Kohfeld and Harrison, 2003; Roberts et al., 2001;

Sun et al., 2000), and the bulk DMARs corresponding to the

alternation of those subunits show similar trends (Fig. 10).

When the fine component alone is considered, the DMARs

from the two sites are very similar. For those reasons, the two

sites seem to be representative of large-scale patterns in the

western CLP. We also report DMAR from another site in the

western CLP (Jingyan: Sun et al., 2012) and from four sites

located in the central CLP: Xifeng and Beiguoyuan (Stevens

and Lu, 2009), Luochuan (Lu et al., 2000, 2013), and Weinan

(Kang et al., 2013). Those sequences have a similar soil unit

stratigraphy for the Holocene (Sect. 3.2), but the DMARs

relative trends are not consistent (Fig. 10), possibly indicat-
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Figure 9. Same as Fig. 6 but for Alaska.

ing that local effects may have a more diffuse influence on

DMARs at the central CLP sites. The central sites show a

more uniform stratigraphy during the Holocene (prevalence

of pedogenesis) with respect to the sites in the western CLP,

possibly indicating a stronger influence of the summer mon-

soon.

Dust plumes emanating from Asian deserts provide dust

inputs to the North Pacific Ocean (Rea, 1994), but because

of low sedimentation rates and the lack of carbonate-rich

sediments, the information from records with temporally re-

solved Holocene data is very limited. We show one record

from core V21-146 (Hovan et al., 1991) which exhibits rela-

tively little variability during the Holocene.

4.7 Greenland

Ice core records from Greenland are among the best tempo-

rally resolved paleoclimate proxies. They show the sharpest

and largest-amplitude oscillations observed in paleodust

records worldwide, following the trends exhibited by the

other proxies such as, e.g., δ18O, in the alternation of sta-

dial and interstadial phases during the last glacial period and

the deglaciation (Fuhrer et al., 1999; Mayewski et al., 1997;

Ruth et al., 2003; Steffensen et al., 2008).

Among the ice cores drilled in Greenland, only one has

a full Holocene dust record: GISP2 (Mayewski et al., 1997;

Zdanowicz et al., 2000; Zielinski and Mershon, 1997); for

Figure 10. Same as Fig. 6 but for eastern Asia and the North Pacific

Ocean.

this core we considered the calcium record as a proxy for dust

(Mayewski et al., 1997). Compared to the large variability in

the glacial period, the Holocene dust MAR is rather flat, but a

closer inspection shows an increasing trend from the early to

the mid-Holocene, followed by a declining trend in the late

Holocene and a rise during the last millennium (Fig. 11).

It is not clear whether dust variability during the Holocene

at GISP2 is related to (1) changes in the dust sources, which

are thought to be in central and eastern Asia (e.g., Bory et

al., 2003), (2) the atmospheric circulation, which did indeed

play a major role during the sharp glacial climate transi-

tions (Mayewski et al., 2014; Meeker and Mayewski, 2002;

Steffensen et al., 2008), or (3) changes in deposition mech-

anisms, which were suggested to be important on glacial–

interglacial timescales but may be of minor relevance dur-

ing the Holocene when accumulation rates are thought to be

rather stable (Unnerstad and Hansson, 2001). New studies

spanning the Holocene perhaps using dust MARs from parti-

cle counters at other sites may help understand whether this

is a consistent feature of dust deposition in Greenland.

4.8 Equatorial Pacific

The equatorial Pacific Ocean is one of the most remote re-

gions in the world. It is characterized by low dust deposi-

tion, correlated with global ice volume and dust in Antarc-
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Figure 11. Same as Fig. 6 but for Greenland.

tic ice cores over glacial–interglacial cycles (Winckler et al.,

2008). The spatial coverage in the region is relatively good

in that there are north–south and east–west transects of cores

with temporally resolved Holocene to Last Glacial Maxi-

mum dust records (Anderson et al., 2006; Bradtmiller et al.,

2006; McGee et al., 2007).

The sites consistently show larger DMARs during the

early Holocene compared to the MH and late Holocene

(Fig. 12), with the two northernmost records from 110 W

(green tones) showing the highest DMARs in then region.

Due to the low sedimentation rates of equatorial Pacific

sediments (typically 1–2 cm kyr−1), it is uncertain whether

these Holocene trends are real or simply reflect the bioturba-

tive mixing of glacial sediments characterized by high dust

MARs with lowermost Holocene sediments. The records

generally show a decreasing DMAR from north to south

and from east to west. Geochemical fingerprinting of dust

in the equatorial Pacific sediments indicates a complex situa-

tion, with a mixture of potential dust sources including Asia,

North and Central or South America, the Sahara, and Aus-

tralia (Xie and Marcantonio, 2012; Ziegler et al., 2007).

4.9 Australia

Australia’s drylands are among the largest dust sources in

the Southern Hemisphere in the present day (Prospero et al.,

2002), and dust deposits on land and in the surrounding seas

Figure 12. Same as Fig. 6 but for the equatorial Pacific.

archive evidence of the continent’s dust history during glacial

and interglacial cycles (De Deckker et al., 2012; Hesse and

McTainsh, 2003; Lamy et al., 2014). The paucity of data for

the Holocene in the Australian region was stated at the time

of the DIRTMAP compilation (Kohfeld and Harrison, 2001),

and since then more research has been carried out (Fitzsim-

mons et al., 2013; Marx et al., 2009; McGowan et al., 2010).

We report (Fig. 13) two marine sediment records sampling

the two main dust corridors emanating from Australia: the

Tasman Sea (Fitzsimmons et al., 2013; Hesse, 1994), and the

eastern Indian Ocean (Fitzsimmons et al., 2013; Hesse and

McTainsh, 2003). The northwestern core from the monsoon-

influenced zone shows relatively high dust MARs during the

early Holocene and a declining trend toward the mid- and

late Holocene (Fitzsimmons et al., 2013). On the other hand,

the core from the Tasman Sea shows a minimum dust MAR

during the early Holocene compared to the MH, in line with

trends reported from a peat bog in New Zealand (Fitzsim-

mons et al., 2013; Marx et al., 2009).

4.10 South Atlantic Ocean

There is some information about lithogenic DMAR in the

southern oceans in the literature, but a quantitative estimation

of eolian DMAR directly related to the atmospheric DF can

be problematic because of low dust DF coupled with strong
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sediment redistribution by currents and the input of non-

eolian material carried by floating icebergs, i.e., ice-rafted

debris (e.g., Kohfeld et al., 2013; Bradtmiller et al., 2009).

Nonetheless, a few studies exploiting the thorium profiling

method attempted to correct SBMAR for sediment redistri-

bution, providing new data (Anderson et al., 2014; Lamy et

al., 2014).

In particular the dust record from core PS2498-1 recov-

ered from the Mid-Atlantic Ridge in the sub-Antarctic South

Atlantic Ocean (Anderson et al., 2014) is characterized by a

high temporal resolution during the Holocene (Fig. 14). The

dust, whose source is hypothesized to be from South Amer-

ica, shows a marked declining trend during the Holocene,

with late Holocene values a factor of ∼ 2 lower than those

found in the early Holocene.

4.11 Antarctica

Ice core records from the East Antarctic Plateau (Delmonte

et al., 2004; Lambert et al., 2008) represent high-quality dust

records in terms of temporal resolution, reliability of the age

model (Veres et al., 2013), isolation of the eolian component

and measure of its size distribution (Delmonte et al., 2004,

2013), identification of remote sources (Albani et al., 2012b;

Delmonte et al., 2010b), and broadscale spatial representa-

tiveness (Mahowald et al., 2011). Similar to Greenland, the

Holocene dust MAR in the East Antarctic Plateau shows lit-

tle variability compared to the large glacial–interglacial and

stadial–interstadial variations.

Both records considered in this study, EPICA (European

Project for Ice Coring in Antarctica) Dome C (EDC) and

Vostok-BH7 (Delmonte et al., 2004; Lambert et al., 2008),

show a slightly declining trend in dust MAR throughout the

Holocene, superimposed on large variability (Lambert et al.,

2012) (Fig. 15). Some deglaciated areas and nunataks at the

edges of the ice sheets are prone to act as dust sources (Bory

et al., 2010; Bullard, 2013; Chewings et al., 2014; Delmonte

et al., 2010b, 2013). In such a remote environment, even

small amounts of local dust can give a relevant contribution

to the dust budget of ice cores, e.g., TALDICE (Albani et al.,

2012a; Delmonte et al., 2010b). Because dust from Antarc-

tic sources does not travel in significant amounts to the in-

terior of the East Antarctic Plateau (Delmonte et al., 2013),

it is unlikely that the declining Holocene DMARs at Vostok

and Dome C are related to the large variations seen in the

TALDICE record (Albani et al., 2012a).

Possible explanations may be related to the interplay of the

contributions from different dust source from South America

and Australia (Albani et al., 2012b; Delmonte et al., 2010b)

and atmospheric circulation changes.

Figure 13. Same as Fig. 6, the Australian region.

4.12 Mass balance of the global dust cycle throughout

the Holocene

A detailed comparison of modeled and observed dust depo-

sition (< 10 µm) for 6 ka BP (5–7 ka BP interval) is shown in

Fig. 16 (see the Supplement for the other time periods and the

dominant sources). The modeled deposition is generally con-

sistent with the observations of dust MAR spanning 6 orders

of magnitude, within a factor of 10, similar to previous stud-

ies (Albani et al., 2014; Mahowald et al., 2006). Nonetheless,

there are a few notable outliers.

While modeled deposition in the equatorial Atlantic is

very well reproduced, observations of DMAR in the north-

western African Margin appear to suggest overestimation by

the model for some sites in that region. There are several

possible (perhaps concurrent) explanations worth consider-

ing. First of all, the model may not be able to represent ade-

quately the spatial distribution of dust sources within north-

ern Africa, resulting in a different localization of the dust

plume and hence a different north–south gradient in the dust

deposition. On the other hand, it is possible that some incon-

sistencies exist among observations, due to different method-

ological approaches, as discussed in Sect. 4.2. From a global

perspective, there is an interesting aspect emerging from the

data in Fig. 16, which may support this argument. The obser-

vational DMARs in some of the North African Margin cores
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Figure 14. Same as Fig. 6 but for the South Atlantic Ocean.

Figure 15. Same as Fig. 6 but for Antarctica.

are comparable to or smaller in magnitude than some of the

cores in the equatorial Pacific, which was unexpected; this

became evident once the size information was taken into ac-

count and coupled to the dust MARs.

In addition to the possible methodological inconsistencies

outlined above, two other potential explanations for compa-

rable fine (< 10 µm) DMARs on the northwestern African

Margin and the equatorial Pacific could be (a) a lack of

wet deposition on the northwestern African Margin, possi-

bly leading to low deposition of fine dust particles there,

despite high atmospheric dust loads; (b) a possible substan-

tial overestimation of dust deposition in the Holocene in the

equatorial Pacific, due to bioturbative mixing of glacial and

Holocene sediments in this region with very low sedimenta-

tion rates (1–2 cm ka−1).

We also note how South Atlantic DMARs are almost as

large as the largest deposition rates observed downwind of

northern Africa for the fine fraction, in a region where satel-

lite images show little dust loading today (Prospero et al.,

2002), possibly indicating that either sediment redistribution

or non-eolian inputs may not be fully constrained in that re-

gion (Anderson et al., 2014).

A significant underestimation of dust deposition by the

model in Alaska is also suggested by the observations. Note

that dust sources in Alaska are glaciogenic, and in the model

for the MH, we prescribed them; we allowed particular grid

cells to emit dust with no constraints provided by vegetation

cover or geomorphic soil erodibility. The prescribed sources

are the Matanuska Valley, the Copper River Valley, and the

belt in central Alaska from Fairbanks to the west coast, in-

cluding the Yukon Valley. The total amount of dust that we

allowed to be emitted from Alaska as a whole is constrained

by the fact that larger emissions would result in a prevalence

of Alaskan dust in Greenland in the model, which would

not be consistent with observations (e.g., Bory et al., 2003).

Satellite imagery clearly shows that even in large dust source

areas, at a small spatial scale dust emanates from a constel-

lation of localized hotspots and then gets mixed downwind

(e.g., Knippertz and Todd, 2012). Global-scale ESMs such

as the CESM have a spatial resolution good enough to cap-

ture a process of a large spatial extent but may be more sensi-

tive to the exact localization of small dust hotspots when they

are scattered over disparate valley settings, as in the case of

Alaska. An insight from a slightly different angle could be

that it is still unclear to what extent the very large DMARs

from localized sources in low hotspot density regions such

as Alaska are representative of large-scale dust emissions, as

discussed in Sect. 4.5.

The temporal evolution of the global dust cycle (Fig. 17)

shows a decreasing trend in dustiness from the early to mid-

Holocene, with a minimum between 6 and 8 ka BP, and an

increasing tendency in the late Holocene, with the global

dust load varying between 17.2 and 20.8 Tg, which corre-

sponds to a difference of ∼ 17 %. For reference, dust load

estimates with the same model are 23.8 Tg for the current
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Figure 16. Comparison of simulated dust deposition (g m−2 a−1) for the 6 ka BP case compared to observational estimates of the fine

(< 10 µm) eolian mass accumulation rate for the period 5–7 ka BP: observations (top); model (middle); model (bottom) versus observations

scatterplot. Horizontal bars represent the variability in observational data averaged within the 5–7 ka BP time lapse (1σ ). Locations of

observational sites are clustered in the scatterplots based on their geographical location, as indicated by the color-coding. In the bottom

scatterplot, squares indicate high confidence level, and diamonds represent medium confidence level.

climate and 37.4 Tg for the LGM (Albani et al., 2014). Simi-

larly, global dust deposition estimates during the Holocene

vary by ∼ 16 %, between ∼ 2900 Tg a−1 (10 ka BP) and

∼ 2400 Tg a−1 (8 ka BP) (Fig. 17).

Two distinct features characterize the spatial distribution

of dust during the Holocene. First, the early to mid-Holocene

is characterized by enhanced dustiness in the Southern Hemi-

sphere compared to the late Holocene. Second, there are

shifts between the relative importance of Asian versus north-

ern African sources. Even in the late Holocene though, there

seems to be an imbalance towards Asian sources, compared

to the present day. This may be related to the difficulties of

constraining the model to the observations in general and for

the northern African regions in particular, although the rela-

tive role of northern Africa as a dust source may have actu-

ally increased significantly since the preindustrial period due

to much increased dustiness (Mulitza et al., 2010).
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Figure 17. Dust deposition flux (g m−2 a−1) from the CESM during the Holocene snapshots at 2, 4, 6, 8, and 10 ka BP, based on spatially

variable emissions constrained by the observational mass accumulation rates. Black circles mark the locations of the observational records

in this compilation.

4.13 Particle size distributions

The organization of the available size distribution data into a

common binning scheme not only provides the tool to relate

DMARs within a common size range but also allows com-

paring modeled and observed size distributions (e.g., Albani

et al., 2014; Mahowald et al., 2014). In Fig. 18 we make this

kind of comparison for the 6 ka BP time slice, which high-

lights how the observed size distribution (blue solid lines) is

coarser close to the source areas and becomes finer for more

remote dust deposits such as marine sediments or ice core

archives. While significant uncertainties and biases may af-

fect the different observations of size distributions (e.g., Ma-

howald et al., 2014; Reid et al., 2003), this relation between

dust particle size and long-range transport is widely recog-

nized (e.g., Lawrence and Neff, 2009; Pye, 1995).

Modeled size distributions (red dashed lines) in general

capture this trend, with coarser size distributions simulated

for terrestrial deposits compared to dust deposition further

away from the dust sources. Notable exceptions are the

Antarctic ice core sites, which exhibit coarse distributions

in the model. This feature was already observed in previ-

ous studies and attributed mainly to biases in transport in the

CAM4–BAM, which is used for this study as well (Albani et

al., 2014; Mahowald et al., 2014).

Focussing on terrestrial deposits, we can also see the grad-

ual tendency for the observed and modeled size distributions

to shift towards finer distributions for larger distances from

the sources. For instance Weinan lies farther away from the

major dust sources in the Ordos, Badain Juran, and Teng-

ger (Fig. 18k) and shows the smallest relative contribution of

dust in the model’s bin 4 (5–10 µm) compared to the other

sites in the CLP. Similarly, Zagoskin Lake in Alaska lies far-

ther away from the putative sources in the Yukon Valley than

OWR does from the Sand Dunes in Nebraska (Fig. 18l), and

Zagoskin Lake exhibits finer particle size distributions.

The temporal variability in dust size distributions during

the Holocene is very limited both in the observations and the

model (not shown).

5 Conclusions

Here, we present the first study using an innovative approach

to organize a paleodust compilation for the Holocene from

different sedimentary archives by collecting and evaluating

dust records that allow the reconstruction of time series of

eolian mass accumulation rates with size information, with

relevance for medium- to long-range transport.

The resulting database has the following characteristics:

– It is concise and accessible. The main information for

each site included in the compilation is a time series

including age (with uncertainty), dust MAR (with un-

certainty), and size distribution (where available), stan-
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Figure 18. Comparison of modeled and observed particle size distributions for the 6 ka BP time slice. Panels (a)–(j) show the modeled size

distribution (red dashed line) and the observed particle size distribution (blue solid line). The normalized observational size data from the

re-binned distributions were first averaged over the 5–7 ka BP interval; then the size distribution data were aggregated in order to match the

model dimensional bins (highlighted by the horizontal grey bars). Both the modeled and observed size distributions are normalized over the

model size range, i.e., over the four size bins. Panels (k) and (l) show the relative geographical position of terrestrial records (red empty

squares) and the model dust sources (filled grey squares) for eastern Asia and North America, respectively. Light grey squares indicate

modeled dust mobilization flux > 0, and dark grey squares denote the major dust sources, i.e., mobilization flux > 200 g m−2 a−1.

dardized by the use of a common binning scheme. The

data are organized in text tables with a coherent for-

matting, easily accessible by scripting or for importing

into spreadsheets. The data will be publicly accessible

on the web and released with this paper. We also pro-

vide a graphical overview that synthesizes “at a glance”

the intrinsic characteristics and uncertainties for all the

different records included in the compilation. Comple-

mentary to the data is a categorical attribution of the

confidence level of each record in terms of providing a

reliable quantitative DMAR time series of eolian dust

relevant to medium- to long-range transport. Finally,

we report detailed information of the dust size distribu-

tions when available. In particular, when full size distri-

butions were available (rather than mineralogical size

classes), we standardized them to a common binning

scheme to facilitate comparability.

– It is detailed and flexible. Ongoing research often pro-

vides the opportunity of refining age models for sed-

imentary records, so we left the compilation open for

easy future updates. In addition to the basic information

mentioned above, we report the ancillary information

necessary to re-derive the dust MARs time series: the

detailed depths and the relevant dust variables, i.e., dust

concentration or dust proxy concentration or dust frac-

tion and bulk density if applicable.

– Its compilation was highly participatory. It results from

an extensive collaboration among scientists from the ob-

servational and modeling communities, which allowed

more in-depth analysis beyond the original studies.

One merit of the database is also to document and archive the

data, and the full size distribution data in particular, which

would otherwise risk being lost. In most cases only one met-

ric, typically the median, is reported in papers, and in fact

some of the size distributions that were once available were

not retrievable for this paper.

We focused on dust variability during the Holocene, with

an emphasis on the MH as a key PMIP scenario and also in

relation to the large amount of variability that affected the

present world’s largest dust source, northern Africa, with the
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termination of the African Humid Period (deMenocal et al.,

2000; McGee et al., 2013).

An integrated approach of merging data and modeling

with the CESM allowed a spatially consistent reconstruc-

tion of the global dust cycle and its variability throughout

the Holocene. Our simulations indicate that the global dust

load showed significant variability ranging between 17.2 and

20.8 Tg, with a minimum during the early to mid-Holocene.

The model–data compilation is likely to be useful to both

dust and ocean biogeochemical modelers, who may use iron

and mineral dust as a ballast input to their model (e.g., Moore

et al., 2006), or for observational studies for putting to put

their cores into the context of existing estimates of deposi-

tional fluxes (e.g., Winckler et al., 2008).

In addition we report on two relevant aspects that emerged

from this work.

First, we showed how the size distribution of dust is in-

trinsically related to the DMAR: ignoring this tight coupling

would cause a misleading interpretation of the dust cycle, not

only for modeling studies but also in a broader sense.

Second, comparing DMARs within a consistent size range

allows for a consistent analysis of the spatial features of the

global dust cycle, which are not deducible by the simple anal-

ysis of relative timing and amplitude of the variations among

different paleodust reconstructions.

Our analysis shows that a knowledge gap in understand-

ing the relevant features of the global dust cycle still exists, in

particular for key regions such as northern African and Asian

dust sources, where quantitative information on the dust cy-

cle is limited or not fully consistent.

In our representation of the loess–paleosol data, we depict

them as DMAR time series, which is a rather innovative ap-

proach introduced in previous compilation efforts (Kohfeld

and Harrison, 2003) as well as in a few observational studies

(e.g., Muhs et al., 2013a; Roberts et al., 2003; Stevens and

Lu, 2009) but which is not widespread in the loess commu-

nity at large. We tentatively used an approach that privileges

pairing of the time series with the soil subunit stratigraphy.

Future work will be needed to better asses this approach as

well as alternative approaches.

The possibility of comparing not only the size range but

also the size distributions of dust particles offers additional

tools to understand the spatial evolution of the dust cycle (as

well as its temporal variability in principle). At a given cli-

mate state, for instance, it allows relating the records from

different sites to the major dust sources.

The work presented in this paper provides the tools for re-

lating DMARs and climate; future work will need to place

the dust records in the context of the climate conditions of

the different regions by comparing dust records to other pa-

leoclimate proxies.

We present a framework for future work on dust compi-

lations, and although we focused on the Holocene here, fu-

ture updates using this framework are intended to improve

the compilation. In addition, the framework provided for this

compilation can be extended to wider time periods in the fu-

ture, for example, the full span of the last glacial cycle and

the deglaciation and the late Holocene to the present day; this

would allow linking the past and the present dust cycle.

In conclusion, our work provides the framework for or-

ganizing a new-generation dust database, with time- and

size-resolved records of dust mass accumulation rates. In

its present form the compilation includes data spanning the

Holocene period. The use of a common, quantitative metric

allows comparing paleodust records in a consistent way. Our

analysis, based on the emerging properties of the data col-

lection, emphasizes the intimate link between particle size

distributions and DMARs and highlights apparent inconsis-

tencies among the records – hidden when the size informa-

tion is ignored; this indicates knowledge gaps in key regions.

Simulations with the CESM constrained by the data from the

compilation provide, for the first time, a reconstruction of

the variability in the global dust cycle during the Holocene,

which can be used as the basis for future studies of dust, cli-

mate, and biogeochemistry interactions.
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Appendix A: Description of the template database

tables and site sheets

All records in this compilation include a basic piece of infor-

mation: a time series of eolian DMAR, with 1σ uncertainty

on both ages and DMARs (Supplement), and a categorical

attribution of the confidence level (Table 1).

Because each record is characterized by a different number

of age points, a separate table is associated with each record.

In addition, a descriptive sheet is provided for each record,

with a graphical overview of the sampling of the profile and

the time-dependent dust MAR with uncertainties as well as

metadata. For sites where size information is available, an

additional integrative table is provided, as well as a document

with details about the re-binning procedure.

Each table in the database is a tab key-separated text doc-

ument, named after the site, as reported in Table 1. The

first four columns contain the basic information: age (ka BP),

dust MAR (g m−2 a−1), age error (ka), and Dust MAR error

(g m−2 a−1). A second set of columns includes data relative

to the depth of the samples and their age: depth top (cm),

depth bottom (cm), depth center (cm), age top (ka BP), age

bottom (ka BP), and age center (ka BP). Finally, a third set of

columns contains information relevant for the dust MAR cal-

culation: sediment bulk MAR (g m−2 a−1), SBMAR relative

error, sediment dry bulk density (SDBD) (g cm−3), SDBD

relative error, SR (cm kyr−1), SR relative error, eolian contri-

bution (fraction), EC (ppm), and EC relative error. All entries

are filled either with data or “NA”.

The tables with size information are also TAB-separated

text documents. There are two types of them: one with size

classes and one with the re-binned size distributions. The

first four columns again contain the basic information: age

(ka BP), dust MAR (g m−2 a−1), age error (ka), and dust

MAR error (g m−2 a−1). The other columns contain either

the size classes as reported in the original work or the binned

data, with upper and lower limits indicated in the first two

rows of the table. The numbers represent the percentage con-

tribution of each bin to the total dust mass. “NA” indicates no

data for bins outside the original measurements size range.

The descriptive sheet is composed of three panels. The up-

per one shows the dust MAR as a function of depth and high-

lights (grey shading) the sampling stratigraphy. The central

panel shows the dust MAR time series, with relative uncer-

tainties. The bottom panel contains a concise summary of

the sampling and of the methods used to determine the ages,

age model, SBMAR and EC (with relative uncertainties), and

size.

For the records with size distributions associated, an addi-

tional PDF document is provided, showing the fitting proce-

dure for each site: original (black) and new (red) cumulative

distributions, fitting spline (green), and original (black) and

new (red) mass–size distribution (scaled). In addition, sev-

eral percentiles across the size spectrum are compared for the

original and re-binned distributions. For the overall record

from one site, two summary metrics are produced, which

synthesize the overall fit to the original data: the Pearson’s

correlation coefficient of the 5th, 25th, 50th, 90th, and 95th

percentiles and the mean normalized bias (MNB):

MNB=
1

nobs · ni

∑
obs

∑
i

(
xobs,i

)
−
(
yobs,i

)
xobs,i

m, (A1)

where nobs is the number of samples for a site, ni is the

number of percentiles included in the calculation (here, five),

xobs,i is the original ith percentile for a given sample, and

yobs,i is the corresponding new binning percentile. In this

context, the MNB is a metric of the average over- or under-

estimation of the “coarseness” of the re-binned size distribu-

tions compared to the original observations.
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