58 research outputs found

    Microsatellite instability and intratumoural heterogeneity in 100 right-sided sporadic colon carcinomas

    Get PDF
    Microsatellite instability has been proposed as an alternative pathway of colorectal carcinogenesis. The aim of this study was to evaluate the interest of immunohistochemistry as a new tool for highlighting mismatch repair deficiency and to compare the results with a PCR-based microsatellite assay. A total of 100 sporadic proximal colon adenocarcinomas were analysed. The expression of hMLH1, hMSH2 and hMSH6 proteins evaluated by immunohistochemistry was altered in 39% of the cancers, whereas microsatellite instability assessed by PCR was detected in 43%. There was discordance between the two methods in eight cases. After further analyses performed on other tumoural areas for these eight cases, total concordance between the two techniques was observed (Kappa=100%). Our results demonstrate that immunohistochemistry may be as efficient as microsatellite amplification in the detection of unstable phenotype provided that at least two samples of each carcinoma are screened, because of intratumoural heterogeneity

    Biomarkers in anal cancer: from biological understanding to stratified treatment

    Get PDF
    Squamous cell carcinomas of the anus and anal canal represent a model of a cancer and perhaps the first where level 1 evidence supported primary chemoradiotherapy (CRT) in treating locoregional disease with curative intent. The majority of tumours are associated with infection with oncogenic subtypes of human papilloma virus and this plays a significant role in their sensitivity to treatment. However, not all tumours are cured with CRT and there remain opportunities to improve outcomes in terms of oncological control and also reducing late toxicities. Understanding the biology of ASCC promises to allow a more personalised approach to treatment, with the development and validation of a range of biomarkers and associated techniques that are the focus of this review

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Screening of Substrate Analogs as Potential Enzyme Inhibitors for the Arginine Kinase of Trypanosoma cruzi

    Get PDF
    Arginine kinase catalyzes the transphosphorylation between phosphoarginine and ADP. Phosphoarginine is involved in temporal ATP buffering and inorganic phosphate regulation. Trypanosoma cruzi arginine kinase phosphorylates only L‐arginine (specific activity 398.9 mUE‐min−1 mg−1), and is inhibited by the arginine analogs, agmatine, canavanine, nitroarginine, and homoarginine. Canavanine and homoarginine also produce a significant inhibition of the epimastigote culture growth (79.7% and 55.8%, respectively). Inhibition constants were calculated for canavanine and homoarginine (7.55 and 6.02 mM, respectively). In addition, two novel guanidino kinase activities were detected in the epimastigote soluble extract. The development of the arginine kinase inhibitors of T. cruzi could be an important feature because the phosphagens biosynthetic pathway in trypanosomatids is different from the one in their mammalian hosts.Fil: Pereira, Claudio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Alonso, Guillermo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Ivaldi, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Bouvier, León Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Torres, Hector Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Flawia, Mirtha Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin
    corecore