37 research outputs found
Meloidogyne incognita PASSE-MURAILLE (MiPM) gene encodes a cell-penetrating protein that interacts with the CSN5 subunit of the COP9 Signalosome.
Na publicação: Erika V. S. Albuquerque and Maria F. Grossi-de-Sá
Genome Expression Dynamics Reveal the Parasitism Regulatory Landscape of the Root-Knot Nematode Meloidogyne incognita and a Promoter Motif Associated with Effector Genes.
Root-knot nematodes (genus Meloidogyne) are the major contributor to crop losses caused by nematodes. These nematodes secrete effector proteins into the plant, derived from two sets of pharyngeal gland cells, to manipulate host physiology and immunity. Successful completion of the life cycle, involving successive molts from egg to adult, covers morphologically and functionally distinct stages and will require precise control of gene expression, including effector genes. The details of how root-knot nematodes regulate transcription remain sparse. Here, we report a life stage-specific transcriptome of Meloidogyne incognita. Combined with an available annotated genome, we explore the spatio-temporal regulation of gene expression. We reveal gene expression clusters and predicted functions that accompany the major developmental transitions. Focusing on effectors, we identify a putative cis-regulatory motif associated with expression in the dorsal glands, providing an insight into effector regulation. We combine the presence of this motif with several other criteria to predict a novel set of putative dorsal gland effectors. Finally, we show this motif, and thereby its utility, is broadly conserved across the Meloidogyne genus, and we name it Mel-DOG. Taken together, we provide the first genome-wide analysis of spatio-temporal gene expression in a root-knot nematode and identify a new set of candidate effector genes that will guide future functional analyses
Radially Extended Kinematics in the S0 Galaxy NGC 2768 from Planetary Nebulae, Globular Clusters and Starlight
There are only a few tracers available to probe the kinematics of individual
early-type galaxies beyond one effective radius. Here we directly compare a
sample of planetary nebulae (PNe), globular clusters (GCs) and galaxy starlight
velocities out to ~4 effective radii, in the S0 galaxy NGC 2768. Using a
bulge-to-disk decomposition of a K-band image we assign PNe and starlight to
either the disk or the bulge. We show that the bulge PNe and bulge starlight
follow the same radial density distribution as the red subpopulation of GCs,
whereas the disk PNe and disk starlight are distinct components. We find good
kinematic agreement between the three tracers to several effective radii (and
with stellar data in the inner regions). Further support for the distinct
nature of the two galaxy components come from our kinematic analysis. After
separating the tracers into bulge and disk components we find the bulge to be a
slowly rotating pressure-supported system, whereas the disk reveals a rapidly
rising rotation curve with a declining velocity dispersion profile. The
resulting V/sigma ratio for the disk resembles that of a spiral galaxy and
hints at an origin for NGC 2768 as a transformed late-type galaxy. A
two-component kinematic analysis for a sample of S0s will help to elucidate the
nature of this class of galaxy.Comment: 10 pages, 5 figures, accepted for publication in MRA
Meloidogyne incognita PASSE-MURAILLE (MiPM) Gene Encodes a Cell-Penetrating Protein That Interacts With the CSN5 Subunit of the COP9 Signalosome
The pathogenicity of phytonematodes relies on secreted virulence factors to rewire host cellular pathways for the benefits of the nematode. In the root-knot nematode (RKN) Meloidogyne incognita, thousands of predicted secreted proteins have been identified and are expected to interact with host proteins at different developmental stages of the parasite. Identifying the host targets will provide compelling evidence about the biological significance and molecular function of the predicted proteins. Here, we have focused on the hub protein CSN5, the fifth subunit of the pleiotropic and eukaryotic conserved COP9 signalosome (CSN), which is a regulatory component of the ubiquitin/proteasome system. We used affinity purification-mass spectrometry (AP-MS) to generate the interaction network of CSN5 in M. incognita-infected roots. We identified the complete CSN complex and other known CSN5 interaction partners in addition to unknown plant and M. incognita proteins. Among these, we described M. incognita PASSE-MURAILLE (MiPM), a small pioneer protein predicted to contain a secretory peptide that is up-regulated mostly in the J2 parasitic stage. We confirmed the CSN5-MiPM interaction, which occurs in the nucleus, by bimolecular fluorescence complementation (BiFC). Using MiPM as bait, a GST pull-down assay coupled with MS revealed some common protein partners between CSN5 and MiPM. We further showed by in silico and microscopic analyses that the recombinant purified MiPM protein enters the cells of Arabidopsis root tips in a non-infectious context. In further detail, the supercharged N-terminal tail of MiPM (NTT-MiPM) triggers an unknown host endocytosis pathway to penetrate the cell. The functional meaning of the CSN5-MiPM interaction in the M. incognita parasitism is discussed. Moreover, we propose that the cell-penetrating properties of some M. incognita secreted proteins might be a non-negligible mechanism for cell uptake, especially during the steps preceding the sedentary parasitic phase
Complete Genome Sequence of \u3ci\u3eBurkholderia phymatum\u3c/i\u3e STM815T , a Broad Host Range and Efficient Nitrogen-Fixing Symbiont of \u3ci\u3eMimosa\u3c/i\u3e Species
Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T , was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp)
The SLUGGS Survey: kinematics for over 2500 globular clusters in twelve early-type galaxies
We present a spectrophotometric survey of 2522 extragalactic globular clusters (GCs) around 12 early-type galaxies, nine of which have not been published previously. Combining space-based and multicolour wide-field ground-based imaging, with spectra from the Keck/DEep Imaging Multi-Object Spectrograph (DEIMOS) instrument, we obtain an average of 160 GC radial velocities per galaxy, with a high-velocity precision of ∼15 km s−1 per GC. After studying the photometric properties of the GC systems, such as their spatial and colour distributions, we focus on the kinematics of metal-poor (blue) and metal-rich (red) GC subpopulations to an average distance of ∼8 effective radii from the galaxy centre. Our results show that for some systems the bimodality in GC colour is also present in GC kinematics. The kinematics of the red GC subpopulations are strongly coupled with the host galaxy stellar kinematics. The blue GC subpopulations are more dominated by random motions, especially in the outer regions, and decoupled from the red GCs. Peculiar GC kinematic profiles are seen in some galaxies: the blue GCs in NGC 821 rotate along the galaxy minor axis, whereas the GC system of the lenticular galaxy NGC 7457 appears to be strongly rotation supported in the outer region. We supplement our galaxy sample with data from the literature and carry out a number of tests to study the kinematic differences between the two GC subpopulations. We confirm that the GC kinematics are coupled with the host galaxy properties and find that the velocity kurtosis and the slope of their velocity dispersion profiles are different between the two GC subpopulations in more massive galaxies
Biodiversity of rhizobia and tripartite interactions in the Piptadenia group (tribe Mimoseae)
Les espèces du groupe Piptadenia sont des légumineuses endémiques du Brésil, dont la plupart sont des arbres capables de se développer sur des sols peu fertiles faisant d'eux de bons candidats pour le reboisement des terres dégradées. Les Piptadenia établissent une symbiose à la fois avec des champignons mycorhiziens à arbuscules (CMA) et des rhizobiums. Ces espèces sont proches du genre Mimosa, connu pour son affinité pour les symbiotes du genre Burkholderia. Dans ce travail de thèse nous décrivons la biodiversité des symbiotes rhizobiums associés au groupe Piptadenia, et élargissons l'affinité des Burkholderia à ce groupe de légumineuses. Les études phylogénétiques sur des marqueurs neutres et symbiotiques montrent une origine stable et ancienne de la symbiose Burkholderia/Mimoseae. Les études de spécificité d'association entre espèces de Burkholderia et espèces de Piptadenia montrent que cette dernière est lâche, les patterns d'association étant davantage liées aux sites prospectés au Brésil plutôt qu'à une sélection par l'hôte. Dans un second temps, nous avons étudié l'association tripartite entre plusieurs génotypes de Burkholderia, un CMA (Glomus clarum), et l'espèce Piptadenia gonoacantha, décrite dans la littérature comme formant une nodulation mycorhize-dépendante. Nos travaux montrent que la nodulation n'est pas CMA-dépendante, mais par contre l'efficience symbiotique des nodules dépend de la mycorhization pour certains génotypes de Burkholderia. Nous décrivons également des interactions entre symbiose rhizobienne et mycorhizienne au sein des nodules (présence du CMA dans les nodules avec sporulation dans certaines combinaisons de symbiotes). Ces travaux soulèvent la nécessité de prendre en compte les interactions génotype-génotype entre symbiotes rhizobiens et mycorhiziens lors de la sélection des inoculums dans le cadre des programmes de revégétalisation au Brésil par des arbres du groupe Piptadenia.The Piptadenia group comprise endemic species from Brazil of which many are trees able to develop on poorly fertile soils and are good candidates for revegetation programs. Piptadenia species establish symbioses with both arbuscular mycorrhizal fungi (AMF) and rhizobia. These species are phylogenetically close to the Mimosa genus, known for its affinity for Burkholderia rhizobial symbionts. In this thesis we describe the biodiversity of rhizobial symbionts associated to the Piptadenia group, and enlarge the affinity towards Burkholderia to this group of legumes. Phylogenetic studies on neutral and symbiotic markers show a stable and ancient symbiosis Burkholderia/Mimoseae. Specificity studies between Burkholderia and Piptadenia group species show that specificity is not strong, and that patterns of associations between partners are isolation site dependent rather than linked to the host legume. In the second part of this thesis we have studied the tripartite association between several Burkholderia genotypes, an AMF (Glomus clarum), and Piptadenia gonoacantha (Pg), a legume species described as making an AMF-dependent nodulation (Jesus et al., 2005). Our experiments show that nodulation in Pg is not AMF-dependent, but that symbiotic efficiency of nodules rely on AMF presence for specific Burkholderia genotypes. We also describe interactions between rhizobial and mycorrhizal symbiosis (AMF presence in nodules, with sporulation in several symbionts combinations). Our work underlines the necessity to consider genotype-genotype interactions between rhizobial and AMF symbionts for the selection of synergistic inoculums in revegetation programs using Piptadenia group species in Brazil