25 research outputs found

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe

    Consensus molecular subtype classification of colorectal adenomas

    Get PDF
    Consensus molecular subtyping is an RNA expression-based classification system for colorectal cancer (CRC). Genomic alterations accumulate during CRC pathogenesis, including the premalignant adenoma stage, leading to changes in RNA expression. Only a minority of adenomas progress to malignancies, a transition that is associated with specific DNA copy number aberrations or microsatellite instability (MSI). We aimed to investigate whether colorectal adenomas can already be stratified into consensus molecular subtype (CMS) classes, and whether specific CMS classes are related to the presence of specific DNA copy number aberrations associated with progression to malignancy. RNA sequencing was performed on 62 adenomas and 59 CRCs. MSI status was determined with polymerase chain reaction-based methodology. DNA copy number was assessed by low-coverage DNA sequencing (n = 30) or array-comparative genomic hybridisation (n = 32). Adenomas were classified into CMS classes together with CRCs from the study cohort and from The Cancer Genome Atlas (n = 556), by use of the established CMS classifier. As a result, 54 of 62 (87%) adenomas were classified according to the CMS. The CMS3 ‘metabolic subtype’, which was least common among CRCs, was most prevalent among adenomas (n = 45; 73%). One of the two adenomas showing MSI was classified as CMS1 (2%), the ‘MSI immune’ subtype. Eight adenomas (13%) were classified as the ‘canonical’ CMS2. No adenomas were classified as the ‘mesenchymal’ CMS4, consistent with the fact that adenomas lack invasion-associated stroma. The distribution of the CMS classes among adenomas was confirmed in an independent series. CMS3 was enriched with adenomas at low risk of progressing to CRC, whereas relatively more high-risk adenomas were observed in CMS2. We conclude that adenomas can be stratified into the CMS classes. Considering that CMS1 and CMS2 expression signatures may mark adenomas at increased risk of progression, the distribution of the CMS classes among adenomas is consistent with the proportion of adenomas expected to progress to CRC

    Change propagation analysis in complex technical systems

    No full text
    Understanding how and why changes propagate during engineering design is critical because most products and systems emerge from predecessors and not through clean sheet design. This paper applies change propagation analysis methods and extends prior reasoning through examination of a large data set from industry including 41,500 change requests, spanning 8 years during the design of a complex sensor system. Different methods are used to analyze the data and the results are compared to each other and evaluated in the context of previous findings. In particular the networks of connected parent, child and sibling changes are resolved over time and mapped to 46 subsystem areas. A normalized change propagation index (CPI) is then developed, showing the relative strength of each area on the absorber-multiplier spectrum between -1 and +1. Multipliers send out more changes than they receive and are good candidates for more focused change management. Another interesting finding is the quantitative confirmation of the "ripple" change pattern. Unlike the earlier prediction, however, it was found that the peak of cyclical change activity occurred late in the program driven by systems integration and functional testing. Patterns emerged from the data and offer clear implications for technical change management approaches in system design. Copyright © 2007 by ASME

    Merging Inhomogeneous Proximity Sensor Systems for Social Network Analysis

    No full text
    Proximity information is a valuable source for social network analysis. Smartphone based sensors, like GPS, Bluetooth and ANT+, can be used to obtain proximity information between individuals within a group. However, in real-life scenarios, different people use different devices, featuring different sensor modalities. To draw the most complete picture of the spatial proximities between individuals, it is advantageous to merge data from an inhomogeneous system into one common representation. In this work we describe strategies how to merge data from Bluetooth sensors with data from ANT+ sensors. Interconnection between both systems is achieved using pre-knowledge about social rules and additional infrastructure. Proposed methods are applied to a data collection from 41 participants during an 8 day pilgrimage. Data from peer-to-peer sensors as well as GPS sensors is collected. The merging steps are evaluated by calculating state-of-the art features from social network analysis. Results indicate that the merging steps improve the completeness of the obtained network information while not altering the morphology of the network

    Deletion of polycomb repressive complex 2 from mouse intestine causes loss of stem cells

    No full text
    BACKGROUND & AIMS: The polycomb repressive complex 2 (PRC2) regulates differentiation by contributing to repression of gene expression and thereby stabilizing the fate of stem cells and their progeny. PRC2 helps to maintain adult stem cell populations, but little is known about its functions in intestinal stem cells. We studied phenotypes of mice with intestine-specific deletion of the PRC2 proteins embryonic ectoderm development (EED) (a subunit required for PRC2 function) and enhancer of zeste homolog 2 (EZH2) (a histone methyltransferase). METHODS: We performed studies of AhCre;EedLoxP/LoxP (EED knockout) mice and AhCre;Ezh2LoxP/LoxP (EZH2 knockout) mice, which have intestine-specific disruption in EED and EZH2, respectively. Small intestinal crypts were isolated and subsequently cultured to grow organoids. Intestines and organoids were analyzed by immunohistochemical, in situ hybridization, RNA sequence, and chromatin immunoprecipitation methods. RESULTS: Intestines of EED knockout mice had massive crypt degeneration and lower numbers of proliferating cells compared with wild-type control mice. Cdkn2a became derepressed and we detected increased levels of P21. We did not observe any differences between EZH2 knockout and control mice. Intestinal crypts from EED knockout mice had signs of aberrant differentiation of uncommitted crypt cells-these differentiated toward the secretory cell lineage. Furthermore, crypts from EED-knockout mice had impaired Wnt signaling and concomitant loss of intestinal stem cells, this phenotype was not reversed upon ectopic stimulation of Wnt and Notch signaling in organoids. Analysis of gene expression patterns from intestinal tissues of EED knockout mice showed dysregulation of several genes involved in Wnt signaling. Wnt signaling was regulated directly by PRC2. CONCLUSIONS: In intestinal tissues of mice, PRC2 maintains small intestinal stem cells by promoting proliferation and preventing differentiation in the intestinal stem cell compartment. PRC2 controls gene expression in multiple signaling pathways that regulate intestinal homeostasis. Sequencing data are available in the genomics data repository GEO under reference series GSE81578; RNA sequencing data are available under subseries GSE81576; and ChIP sequencing data are available under subseries GSE81577

    Proteogenomic analysis of the autoreactive B cell repertoire in blood and tissues of patients with Sjögren's syndrome

    No full text
    OBJECTIVE: To comparatively analyse the aberrant affinity maturation of the antinuclear and rheumatoid factor (RF) B cell repertoires in blood and tissues of patients with Sjögren's syndrome (SjS) using an integrated omics workflow. METHODS: Peptide sequencing of anti-Ro60, anti-Ro52, anti-La and RF was combined with B cell repertoire analysis at the DNA, RNA and single cell level in blood B cell subsets, affected salivary gland and extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT) of patients with SjS. RESULTS: Affected tissues contained anti-Ro60, anti-Ro52, anti-La and RF clones as a small part of a polyclonal infiltrate. Anti-Ro60, anti-La and anti-Ro52 clones outnumbered RF clones. MALT lymphoma tissues contained monoclonal RF expansions. Autoreactive clones were not selected from a restricted repertoire in a circulating B cell subset. The antinuclear antibody (ANA) repertoires displayed similar antigen-dependent and immunoglobulin (Ig) G1-directed affinity maturation. RF clones displayed antigen-dependent, IgM-directed and more B cell receptor integrity-dependent affinity maturation. This coincided with extensive intra-clonal diversification in RF-derived lymphomas. Regeneration of clinical disease manifestations after rituximab coincided with large RF clones, which not necessarily belonged to the lymphoma clone, that displayed continuous affinity maturation and intra-clonal diversification. CONCLUSION: The ANA and RF repertoires in patients with SjS display tissue-restricted, antigen-dependent and divergent affinity maturation. Affinity maturation of RF clones deviates further during RF clone derived lymphomagenesis and during regeneration of the autoreactive repertoire after temporary disruption by rituximab. These data give insight into the molecular mechanisms of autoreactive inflammation in SjS, assist MALT lymphoma diagnosis and allow tracking its response to rituximab
    corecore