23 research outputs found

    Prediction of Metabolic Pathways Involvement in Prokaryotic UniProtKB Data by Association Rule Mining

    Full text link
    The widening gap between known proteins and their functions has encouraged the development of methods to automatically infer annotations. Automatic functional annotation of proteins is expected to meet the conflicting requirements of maximizing annotation coverage, while minimizing erroneous functional assignments. This trade-off imposes a great challenge in designing intelligent systems to tackle the problem of automatic protein annotation. In this work, we present a system that utilizes rule mining techniques to predict metabolic pathways in prokaryotes. The resulting knowledge represents predictive models that assign pathway involvement to UniProtKB entries. We carried out an evaluation study of our system performance using cross-validation technique. We found that it achieved very promising results in pathway identification with an F1-measure of 0.982 and an AUC of 0.987. Our prediction models were then successfully applied to 6.2 million UniProtKB/TrEMBL reference proteome entries of prokaryotes. As a result, 663,724 entries were covered, where 436,510 of them lacked any previous pathway annotations

    The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

    Get PDF
    Background The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. Results Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory. Conclusion We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.Peer reviewe

    The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

    Get PDF
    BackgroundThe Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function.ResultsHere, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory.ConclusionWe conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.</p

    Metabolic Pathway Prediction of UniProtKB Prokaryotic Data

    No full text
    Pathway Prediction tool for UniProtKB data along with comparison results to Rule_Base, HAMAP_Rule and SAAS on multiple prokaryotic organisms

    DeepPVP: phenotype-based prioritization of causative variants using deep learning

    Get PDF
    Abstract Background Prioritization of variants in personal genomic data is a major challenge. Recently, computational methods that rely on comparing phenotype similarity have shown to be useful to identify causative variants. In these methods, pathogenicity prediction is combined with a semantic similarity measure to prioritize not only variants that are likely to be dysfunctional but those that are likely involved in the pathogenesis of a patient’s phenotype. Results We have developed DeepPVP, a variant prioritization method that combined automated inference with deep neural networks to identify the likely causative variants in whole exome or whole genome sequence data. We demonstrate that DeepPVP performs significantly better than existing methods, including phenotype-based methods that use similar features. DeepPVP is freely available at https://github.com/bio-ontology-research-group/phenomenet-vp . Conclusions DeepPVP further improves on existing variant prioritization methods both in terms of speed as well as accuracy

    OligoPVP: Phenotype-driven analysis of individual genomic information to prioritize oligogenic disease variants.

    Get PDF
    An increasing number of disorders have been identified for which two or more distinct alleles in two or more genes are required to either cause the disease or to significantly modify its onset, severity or phenotype. It is difficult to discover such interactions using existing approaches. The purpose of our work is to develop and evaluate a system that can identify combinations of alleles underlying digenic and oligogenic diseases in individual whole exome or whole genome sequences. Information that links patient phenotypes to databases of gene-phenotype associations observed in clinical or non-human model organism research can provide useful information and improve variant prioritization for genetic diseases. Additional background knowledge about interactions between genes can be utilized to identify sets of variants in different genes in the same individual which may then contribute to the overall disease phenotype. We have developed OligoPVP, an algorithm that can be used to prioritize causative combinations of variants in digenic and oligogenic diseases, using whole exome or whole genome sequences together with patient phenotypes as input. We demonstrate that OligoPVP has significantly improved performance when compared to state of the art pathogenicity detection methods in the case of digenic diseases. Our results show that OligoPVP can efficiently prioritize sets of variants in digenic diseases using a phenotype-driven approach and identify etiologically important variants in whole genomes. OligoPVP naturally extends to oligogenic disease involving interactions between variants in two or more genes. It can be applied to the identification of multiple interacting candidate variants contributing to phenotype, where the action of modifier genes is suspected from pedigree analysis or failure of traditional causative variant identification.King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. URF/1/3454-01-01, FCC/1/1976-08-01, and FCS/1/3657-02-01. H2020-EINFRA (731075) National Science Foundation (IOS:1340112

    Current status in UniProtKB/TrEMBL for prokaryotic reference proteome set.

    No full text
    <p>Current status in UniProtKB/TrEMBL for prokaryotic reference proteome set.</p

    Comparison of predictions corresponding to UniProtKB/TrEMBL reference proteome prokaryotic entries touched by our system, Hamap-Rule, SAAS, and Rule-base.

    No full text
    <p>Comparison of predictions corresponding to UniProtKB/TrEMBL reference proteome prokaryotic entries touched by our system, Hamap-Rule, SAAS, and Rule-base.</p

    Examples of itemsets corresponding to some UniProt/Swiss-Prot entries of some prokaryotes with manual assertion evidence for pathway annotations.

    No full text
    <p>Examples of itemsets corresponding to some UniProt/Swiss-Prot entries of some prokaryotes with manual assertion evidence for pathway annotations.</p
    corecore