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Abstract

Background: Prioritization of variants in personal genomic data is a major challenge. Recently, computational
methods that rely on comparing phenotype similarity have shown to be useful to identify causative variants. In these
methods, pathogenicity prediction is combined with a semantic similarity measure to prioritize not only variants that
are likely to be dysfunctional but those that are likely involved in the pathogenesis of a patient’s phenotype.

Results: We have developed DeepPVP, a variant prioritization method that combined automated inference with
deep neural networks to identify the likely causative variants in whole exome or whole genome sequence data. We
demonstrate that DeepPVP performs significantly better than existing methods, including phenotype-based methods
that use similar features. DeepPVP is freely available at https://github.com/bio-ontology-research-group/
phenomenet-vp.

Conclusions: DeepPVP further improves on existing variant prioritization methods both in terms of speed as well as
accuracy.
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Background
There is now a large number of methods available for
prioritizing variants in whole exome or whole genome
datasets [1]. These methods commonly identify the vari-
ants which are pathogenic, i.e., the variants that may alter
normal functions of a protein, either directly through
a change in a protein’s amino acid sequence or indi-
rectly through a change of expression [2–4]. In coding
and noncoding DNA sequences, there are usually multi-
ple variants that could possibly be pathogenic, but most of
them are sub-clinical or will not result in any detectable
phenotypic manifestations [5].
Recently, several methods have become available that

utilize information about phenotypes observed in a
patient to identify potentially causative variants [6–9].
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Phenotypes are useful for identifying gene–disease asso-
ciations because they implicitly reflect interactions occur-
ring within an organism across multiple levels of
organisation [10–12]. Phenotype-based methods work by
comparing the phenotypes of a patient with a knowl-
edgebase of gene-to-phenotype associations. A measure
of phenotypic similarity is computed between a patient’s
phenotypes and abnormal phenotypes associated with
gene variants or mutations. The phenotypic similarity is
then used either as a filter to remove pathogenic variants
in genes that are not associated with similar phenotypes
to the ones observed in the patient [9] or as a feature in
machine learning approaches [6, 7].
The gene-to-phenotype associations used in phenotype-

based prioritization strategies come from clinical obser-
vations such as those reported in the Online Mendelian
Inheritance in Man (OMIM) database [13] or in the Clin-
Var database [14]. In some cases, theymay also come from
model organisms. Comparing model organism pheno-
types to human phenotypes (i.e., the phenotypes observed
in a patient) requires a framework that allows pheno-
types of different species to be compared, such as the
Uberpheno [15] or PhenomeNET ontology [16].
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We have previously developed the PhenomeNET Vari-
ant Predictor (PVP) [7] to prioritize causative variants in
personal genomic data. We have shown that PVP out-
performs other phenotype-based approaches such as the
Exomiser or Genomiser tools [17, 18], or Phevor [9].
PVP is based on a random forest classifier, similarly to
Exomiser and Genomiser, which also use a random for-
est. Features used to classify a variant as causative or
non-causative combine a phenotype similarity score (to
prioritize a gene as being associated with the phenotypes
observed in the patient) and a pathogenicity score, as
well as other features such as the mode of inheritance
and genotype of the variant. As most variants are neutral,
there is a very large imbalance between positive and neg-
atives, and the challenges for building a machine learning
model for finding causative variants is to account for this
imbalance during training and testing.
Recently, deep neural networks have shown to be suc-

cessful in many domains [19] and often result in better
classification performance [4]. We have developed Deep-
PVP, an extension of the PVP system which uses deep
learning and achieves significantly better performance in
predicting disease-associated variants than the previous
PVP system, as well as competing algorithms that com-
bine pathogenicity and phenotype similarity. DeepPVP
not only uses a deep artificial neural network to classify
variants into causative and non-causative but also cor-
rects for a common bias in variant prioritization methods
[20, 21] in which gene-based features are repeated and
potentially lead to overfitting. DeepPVP is freely avail-
able at https://github.com/bio-ontology-research-group/
phenomenet-vp.

Implementation
Training and testing data
We downloaded the ClinVar database 7th Feb, 2017, and
extracted GRCh37 genomic variants annotated with at
least one disease fromOMIM, characterized as Pathogenic
in their clinical significance, and not annotated with con-
flicting interpretation in their review status. We obtained
31,156 pathogenic variants associated with 3938 diseases
in total and the set of these variants constitutes candi-
date positive instances in our training dataset. We also
extracted GRCh37 genomic variants that are character-
ized as Benign in clinical significance, and not anno-
tated with conflicting interpretation in their review status.
We obtained 23,808 such benign genomic variants from
ClinVar which form the candidate negative instances in
our training dataset. We excluded any variant records
mapped to more than one gene and variant records with
missing information on the reference or alternate alleles.
For pathogenic variant records, we defined variant–
disease pairs for each pathogenic variant and its asso-
ciated OMIM disease. In our dataset, some pathogenic

variants are annotated with multiple OMIM diseases. For
each of these variants and the n OMIM diseases they
may cause, we created n variant-disease pairs. For exam-
ple, variant rs201108965 in TMEM216 is annotated with
two diseases; Joubert syndrome 2 (OMIM:608091) and
Meckel syndrome type 2 (OMIM:603194). We define two
variant-disease pairs (rs201108965, OMIM:608091) and
(rs201108965, OMIM:603194). After this step, we have
30,770 pathogenic variant-disease pairs and 20,174 benign
variants.
In DeepPVP, we use the zygosity of a variant as one of

the training features. The zygosity information is not pro-
vided in ClinVar. In a given Variant Call Format (VCF)
[22] file, zygosity is represented in the genotype field.
For instance, a heterozygous variant will have a geno-
type value 0/1, while a homozygous variant will have
a genotype value 1/1 in the VCF file. We assigned the
genotype information to our pathogenic variant-disease
pairs based on the mode of inheritance associated with
the disease caused by the variant. We extracted the
mode of inheritance of the associated OMIM disease
using the information provided by the Human Pheno-
type Ontology (HPO) annotations of OMIM diseases
[23]. If the disease’s mode of inheritance is recessive,
we assigned the zygosity of the variant as homozygote
(denoted with genotype 1/1). In this case, we created a
variant-disease-zygosity triple representing this informa-
tion. If the OMIM disease’s mode of inheritance is not
recessive (i.e., any other mode of inheritance, including
dominant, unknown, X-linked, etc.), we generated two
variant-disease-zygosity triples and characterized one of
them as homozygote (denoted with genotype 1/1) and
another as heterozygote (denoted with genotype 0/1).
For example, pathogenic variant rs397704705 in AP5Z1
is associated with Spastic paraplegia 48 (OMIM:613647).
This OMIM disease is recessive and, hence, we charac-
terize variant rs397704705 with genotype 1/1, generat-
ing a variant-disease-zygosity triple consisting of variant
rs397704705, disease OMIM:613647, and genotype 1/1.
Another example is the pathogenic variant rs387907031
in ARHGAP31 associated with Adams-Oliver syndrome
1 (OMIM:100300). This disease is dominant and, hence,
we generated two variant-disease-zygosity triples: variant
rs387907031, disease OMIM:100300, and the genotype
0/1, and variant rs387907031, disease OMIM:100300,
and genotype 1/1. Since benign variants are not associ-
ated with a disease or mode of inheritance, we treat each
of them as both a homozygote and heterozygote, gener-
ating two variant-zygosity pairs for each benign variant.
After this step, we obtained 61,540 triples consisting of
pathogenic variant, disease, and zygosity, and 40,348 pairs
of benign variant and zygosity.
The triples consisting of variant, disease, and zygos-

ity constitute positive samples. For each positive instance
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(V ,D,Z) consisting of a variant, disease, and zygosity, we
randomly select, with equal probability, one of two possi-
ble negative instances: a randomly selected benign variant
in the same gene as V, or a triple (V ,D′,Z) where D′ �= D.
To map intergenic variants to genes, we link variants to
their nearest gene.
For example, a positive instance in our training

data is a pathogenic variant rs267606829 in FOXRED1,
associated with Mitochondrial complex I deficiency
(OMIM:252010), as a homozygote. A negative instance
according to the first strategy could be a benign variant,
such as rs1786702, in FOXRED1, as a heterozygote. A
negative instance according to the second strategy is the
same pathogenic variant, rs267606829 in FOXRED1, as a
homozygote, but associated with another OMIM disease
such as Tooth Agenesis (OMIM:604625). The resulting
training data is balanced.
As an independent and unseen evaluation dataset, we

downloaded all variants from ClinVar released between
Feb 8th 2017 and Jan 27th 2018. In this dataset, we pro-
cessed all GRCh37 variants in the same manner as for
our training dataset to construct triples of pathogenic
variants, disease, and zygosity. However, if the OMIM
disease’s mode of inheritance of the variant is not reces-
sive (i.e., any other mode of inheritance, including dom-
inant, unknown, X-linked, etc.), we assigned the zygosity
randomly either as homozygote (denoted with genotype
1/1), or heterozygote (denoted with genotype 0/1). We
obtained a total of 5686 such triples associated with 1370
diseases for validation.

Generation of synthetic patients
In our evaluation, we generated a set of synthetic patients
as a realistic evaluation case, similarly to previous work
[7, 18]. We randomly selected a whole exome from the
1000 Genomes project [24] and inserted a pathogenic
variant V, assign the disease associated with V in ClinVar
to the exome, and present V as a homo- or heterozy-
gote based on the mode of inheritance associated with the
disease. Each of these exomes together with the disease’s
phenotypes and mode of inheritance form a synthetic
patient in which we aim to recover the inserted variant.

Annotating variants
Annotating variants with pathogenicy scores from CADD
[3], DANN [25], and GWAVA [26] is a time-consuming
process in PVP [7] and other phenotype-based variant
prioritization tools [18], especially when analyzing WGS
data comprised of millions of variants. PVP 1.0 uses tabix
[27] for indexing and retrieval of the pathogenicty scores
per chromosome and genomic position. To optimize the
annotation phase of DeepPVP, we extracted 31,491,995
variants from samples of the 1000 Genomes Project
[24] and annotated them with pathogenicity scores from

CADD, DANN, and GWAVA. DeepPVP keeps this set of
pre-annotated variants inmemory to provide fast retrieval
of annotations for common variants. DeepPVP utilizes
tabix only when the variant annotated is not available in
the pre-annotated library, and therefore minimizes disk
access.

Model and availability
We implemented our DeepPVP deep neural network in
Python 2.7. We used Keras [28] with a TensorFlow back-
end [29]. We used one hot encoding to represent our
categorical feature of the inheritance mode of the dis-
ease. We handled missing values for CADD, GWAVA,
DANN, and semantic similarity scores by mean imputa-
tion. We also added additional flags for missing values as
features. We retrieved gene-phenotype association data
from human and model organisms (mouse and zebrafish)
on Feb 7th, 2017 and used them to generate the ontology
and high level phenotypes and semantic similarity score
features.
We used the Hyperas [30] Python library for tuning the

hyperparameters of the neural network using the tree-
structured Parzen estimator (TPE) algorithm [31]. We
selected the following hyperparameters for tuning: num-
ber of hidden layers (two, three, or four), number of hid-
den units in each layer (32, 64, 67, 128, 134, 201, 256, and
512), and the batch size (2500, 5000, 10,000, 15,000, and
20,000). The hyperparameters combination resulting in
best performing model out of 50 trials using Hyperas was
selected for the final model setup. Therefore, we designed
a sequential model with an input layer, three hidden layers
of 67, 32, 256 neurons respectively with Rectified Lin-
ear Units (ReLU) [32] activation function, and an output
layer with a sigmoid activation function. We trained the
model using the Adam optimization algorithm [33] which
has been widely adopted for deep learning as a computa-
tionally efficient, fast convergent, extension to stochastic
gradient descent. We used dropout [34] between the hid-
den layers and the output layer to prevent overfitting. We
trained our DeepPVP model for 100 epochs, 2500 batch
size, and a learning rate of 0.001. In training, we speci-
fied a 20% random stratified-by-disease validation set, and
binary cross entropy loss function. We kept the rest of the
parameters in their default values. The model was trained
on the CPU.
The DeepPVP system (version 2.1), training and eval-

uation experiments, the synthetic genome sequences and
our analysis results can be found at https://github.com/
bio-ontology-research-group/phenomenet-vp.

Results
DeepPVP: phenotype-based prediction using a deep
artificial neural networks
We developed the Deep PhenomeNET Variant Predictor
(DeepPVP) as a system to identify causative variants for
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patients based on personal genomic data as well as pheno-
types observed in the patient. We consider a variant to be
causative for a disease D if the variant is both pathogenic
and affects a structure or function that leads to D. This
distinction is motivated by the observation that healthy
individuals can have multiple highly pathogenic variants
resulting in a complete loss of function; it is therefore not
usually sufficient to identify pathogenic variants alone as
there may be many.
DeepPVP is a command-line tool which takes a Variant

Call Format (VCF) [22] file as an input together with a set
of phenotypes coded either through the Human Pheno-
type Ontology (HPO) [35] or the Mammalian Phenotype
Ontology (MP) [36]. It outputs a prediction score for each
variant in the VCF file; the prediction score measures the
likelihood that a variant is causative for the phenotypes
specified as input to the method.
To predict whether a variant is causative or not, Deep-

PVP uses similar features as the PVP system [7] and
combines multiple pathogenicity prediction scores, a phe-
notype similarity computed by the PhenomeNET system,
and a high-level phenotypic characterization of a patient.
The full list of features used by DeepPVP is listed in
Additional file 1: Table S1. All features can be generated
from a patient’s VCF file and a set of phenotypes coded
either with HPO or MP.
In DeepPVP, we use a deep neural network to classify

variants as causative or non-causative. Specifically, Deep-
PVP uses a feed forward neural network with five layers
(see Fig. 1). The input layer in our architecture consists
of 67 neurons (for the 67 features) and an output layer
consisting of a single output neuron which outputs the
prediction score of DeepPVP. DeepPVP uses three hid-
den layers with 67, 32, and 256 neurons, respectively. Each
hidden layer uses a Rectified Linear Unit (ReLU) [32]

activation function, and the output layer uses a sigmoid
activation function.
DeepPVP is trained similarly as PVP to improve per-

formance of identifying causative variants in real genomic
sequences (in contrast to performance on a testing set).
When training DeepPVP, we use as positive instances all
causative variants from our training set together with the
phenotypes of the disease for which they are causative.
We discriminate these from two kinds of negatives: benign
variants (i.e., variants that do not alter protein function)
and pathogenic but non-causative variants. We consider
pathogenic non-causative variants as pathogenic variants
(in our training set) which are not associated with pheno-
types of the disease they cause, but rather with a different
disease. The aim of this selection strategy is to discrimi-
nate causative variants from all other variants.
We train the DeepPVP model using back-propagation,

using binary cross entropy as loss function, and evalu-
ate the model’s results on predicting causative variants,
and compare against several competing methods. While
the different evaluation scenarios omit some parts of the
information about variants and the diseases they are asso-
ciated with in order to not bias the evaluation results, we
finally retrain a model using all available information and
make it available as the final DeepPVP prediction model.

Evaluating DeepPVP’s ability to find causative variants
We use a nested cross-validation experiment as our main
evaluation and as means to optimize hyperparameters of
our DeepPVP model. We first split our training instances
into five folds (80% for training and 20% for testing) where
each fold is stratified by disease (i.e., the diseases are dis-
joint between all five folds). We use the training part in
each of these folds for optimizing parameters and hyper-
parameters and use the 20% to evaluate and report the

Fig. 1 The DeepPVP neural network model
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final performance. In each of the resulting five folds, we
split the 80% training set into further five folds that are
similarly stratified by disease. In total, we end up with 25
different training sets (in the second level of this nested
cross-validation) and evaluation sets.
For each of the 25 different splits of data, we tuned the

hyperparameters of the network (number of hidden lay-
ers, number of hidden units, and batch size) using the
Hyperas library [30].We generated 50 trial models with 50
epochs for each model using the tree-structured Parzen
estimator algorithm [31] to find optimal hyperparameters.
We ended up with 25 optimized hyperparameters, and
we selected the hyperparameters that resulted in the best
performance in most of the folds.
After hyperparameter optimization, we train five dif-

ferent models using the optimal set of hyperparameters
obtained in the second level of the cross-validation and
evaluate the predictive performance of the model on the
20% set that has not been used for optimizing hyperpa-
rameters. The resulting accuracy of our model in 5-fold
cross-validation is 0.911, area under the receiver operat-
ing characteristic curve (ROCAUC) [37] is 0.959, and the
area under the precision–recall curve (AUPR) is 0.954.
For comparison, we also performed the same training and
evaluation steps using a random forest classifier, and we
obtained an accuracy of 0.898, a ROCAUC of 0.958, and
an AUPR of 0.952.
To accurately evaluate the performance of DeepPVP on

real sequencing data, we apply DeepPVP to causative vari-
ants added to the ClinVar database on or after Feb 7th,
2017 while our training data is restricted to the variants
that have been added to ClinVar before this date. Between
Feb 7th, 2017 and Feb 6th, 2018, there were 5686 causative
variants added to ClinVar, covering 1370 diseases. 297 of
these diseases were not present in our training data. Evalu-
ation on completely unseen variants allows us to estimate
under more realistic conditions how well DeepPVP is able
to prioritize novel variants.
We generated synthetic patient exomes by inserting a

single causative variant from the set of 5686 variants in a
randomly selected exome from the 1000 Genomes Project
[24] (removing all variants with Minor Allele Frequency
(MAF) greater than 1% (using the frequencies provided
by the 1000 Genomes across all populations). We then
assign the phenotypes associated with the causative vari-
ant in ClinVar, as well as the mode of inheritance of the
disease, to the synthetic exome and consider this combi-
nation a synthetic patient. We use DeepPVP to prioritize
variants given the synthetic patient’s filtered VCF file, phe-
notypes, and mode of inheritance, and determine the rank
at which the causative (inserted) variant is found. For
comparison, we use PVP v1.1 [7] as well as the random
forest classifier we trained using the same training setup
as DeepPVP (named DeepPVP-RF). We further compare

the performance to the Exomiser version 7.2.1 released on
Feb 6th, 2017 with and without using CADD scores as fea-
ture. Furthermore, we compare the performance against
CADD [3], DANN [25], and GWAVA [26]. Table 1 shows
the evaluation results. We find that DeepPVP has an
improved performance compared to the original PVP, the
use of a neural network classifier gives better results than
the random forest classifier, and DeepPVP outperforms
Exomiser, CADD, DANN, and GWAVA in this evaluation.
Of the 5686 “new” variants in our ClinVar evaluation

set, 5489 are in 934 genes which are associated with phe-
notypes. These 5489 variants are associated with 1289
diseases. Only 197 variants are in 74 novel genes and
are associated with 89 diseases. We test the performance
of DeepPVP separately on these 197 variants. DeepPVP
identifies 46 of the 197 variants (23%) at rank one, and
87 variants (44%) in the first ten ranks. In comparison,
Exomiser and CADD identified 26 and 13 variants at the
first, and 61 and 51 variants in the top ten ranks, respec-
tively. Exomiser identified 27 at rank one, and 64 in the top
ten ranks. This evaluation demonstrates that DeepPVP
can not only identify variants in known disease-associated
genes but also in novel genes, although with lower per-
formance than if the gene is already known. While the
predictive performance of DeepPVP in this evaluation is
lower than in the other types of evaluation, DeepPVP still
improves over established methods such as CADD and
Exomiser.
Our performance results demonstrate that DeepPVP

can identify causative variants with significantly higher
recall at rank one and rank ten than several other meth-
ods to which we compare, including the original PVP
system [7] fromwhich DeepPVP is derived. In some appli-
cations of variant prioritization, it is also important to
identify causative variants quickly and with low com-
putational costs. We therefore benchmarked the time it
takes DeepPVP to process large VCF files. We used a
machine equipped with 128 GB Memory and an Intel
Xeon ES-2680 v3 CPU with 2.50GHz and 16 cores, using

Table 1 Comparison of top ranks of ClinVar variants as recovered
from WES data; variants with MAF > 1% are filtered

Top hit Top 10 hits Total ROC AUC AUPR

DeepPVP 4060 (71.40%) 4750 (83.54%) 5686 0.94 0.66

DeepPVP-RF 3520 (61.91%) 4321 (75.99%) 5686 0.95 0.55

PVP 1.1 3619 (63.65%) 4076 (71.68%) 5686 0.95 0.55

Exomiser 2910 (51.18%) 3608 (63.45%) 5686 0.89 0.43

Exomiser-CADD 2926 (51.46%) 3621 (63.68%) 5686 0.89 0.43

CADD 1060 (18.64%) 2429 (42.72%) 5686 0.94 0.14

DANN 170 (2.99%) 1322 (23.25%) 5686 0.90 0.03

GWAVA 63 (1.11%) 264 (4.64%) 5686 0.66 0.01
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a 64-bit Ubuntu 16.04 system.We selected a genome from
the Personal Genome Project (PGP) [38] which contains
4,120,185 variants to benchmark DeepPVP. We priori-
tized variants in this genome using DeepPVP ten times
and recorded the time elapsed. On average, analysis of all
the variants in the whole genome VCF file took DeepPVP
85 min, i.e., approximately 1.3 milliseconds per variant.
Analyzing the same VCF file using the phenotype-based
Exomiser software (with and without CADD annotations)
took 189 min without CADD annotations (approximately
2.7 milliseconds per variant) and 800 min with CADD
annotations (approximately 11.6milliseconds per variant).

Conclusions
DeepPVP is an easy to use and fast phenotype-based
tool for prioritizing variants in personal whole exome or
whole genome sequence data. DeepPVP takes a VCF file
of an individual as input, together with an ontology-based
description of the phenotypes observed in an individual.
It then aims to identify the variants of the individual that
are causative of the phenotypes observed.
Through the use of a deep neural network and

an updated training and evaluation strategy, DeepPVP
improves over its predecessor PVP, and further outper-
forms several established methods for variant prioritiza-
tion, including the phenotype-based tool Exomiser [17, 18]
and pathogenicity scoring algorithms such as CADD [3].
Importantly, DeepPVP shows a better performance than
other methods in finding variants in novel genes, i.e.,
genes not previously associated with a disease phenotype,
and may therefore be particularly suited for investigating
variants in orphan diseases as well as variants of unknown
significance in genes not yet associated with phenotypes.
We update DeepPVP in regular intervals when new

training data (i.e., variants associated with diseases
and phenotypes, as well as gene–phenotype associ-
ations) becomes available. DeepPVP is freely avail-
able at https://github.com/bio-ontology-research-group/
phenomenet-vp.

Availability and requirements
• Project name: DeepPVP
• Project home page: https://github.com/bio-ontology-

research-group/phenomenet-vp
• Operating system: Java virtual machine
• Programming language: Java, Groovy, Python
• Other requirements: none
• License: 4-clause BSD-style license

Additional file

Additional file 1: Features used to train DeepPVP. A table consisting of
the features and their representation used in the training and prediction of
DeepPVP. (PDF 33 kb)
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