51 research outputs found

    Seroprevalence of HIV, hepatitis b, and hepatitis c among opioid drug users on methadone treatment in the netherlands

    Get PDF
    Background: Injecting drug users (IDU) remain an important population at risk for blood-borne infections such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and hepatitis C virus (HCV). In the Netherlands, a program is being implemented to offer annual voluntary screening for these infections to opioid drug users (ODUs) screened in methadone care. At two care sites where the program is now operating, our study aimed to estimate the seroprevalence among ODUs screened for HIV, HBV and HCV; to evaluate HBV vaccination coverage; and to assess the feasibility of monitoring seroprevalence trends by using routine annual screening data.Methods: Opioid drug users on methadone treatment are routinely offered voluntary screening for infectious diseases such as HIV, HBV and HCV. Data on uptake and outcome of anti-HIV, anti-HBc, and anti-HCV screening among ODUs receiving methadone were obtained from two regions: Amsterdam from 2004 to 2008 and Heerlen from 2003 to 2009.Findings: Annual screening uptake for HIV, HBV and HCV varied from 34 to 69%, depending on disease and screening site. Of users screened, 2.5% were HIV-positive in Amsterdam and 11% in Heerlen; 26% were HCV-positive in Amsterdam and 61% in Heerlen. Of those screened for HBV, evidence of current or previous infection (anti-HBc) was found among 33% in Amsterdam and 48% in Heerlen. In Amsterdam, 92% were fully vaccinated for HBV versus 45% in Heerlen.Conclusion: Annual screening for infectious diseases in all ODUs in methadone care is not fully implemented in the Netherlands. On average, more than half of the ODUs in methadone care in Heerlen and Amsterdam were screened for HIV, HBV and HCV. In addition, screening data indicate that HBV vaccination uptake was rather high. While the HIV prevalence among these ODUs was relatively low compared to other drug-using populations, the high HCV prevalence among this group underscores the need to expand annual screening and interventions to monitor HIV, HBV and HCV in the opioid drug-using population

    Identification of a novel resistance (E40F) and compensatory (K43E) substitution in HIV-1 reverse transcriptase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 nucleoside reverse transcriptase inhibitors (NRTIs) have been used in the clinic for over twenty years. Interestingly, the complete resistance pattern to this class has not been fully elucidated. Novel mutations in RT appearing during treatment failure are still being identified. To unravel the role of two of these newly identified changes, E40F and K43E, we investigated their effect on viral drug susceptibility and replicative capacity.</p> <p>Results</p> <p>A large database (Quest Diagnostics database) was analysed to determine the associations of the E40F and K43E changes with known resistance mutations. Both amino acid changes are strongly associated with the well known NRTI-resistance mutations M41L, L210W and T215Y. In addition, a strong positive association between these changes themselves was observed. A panel of recombinant viruses was generated by site-directed mutagenesis and phenotypically analysed. To determine the effect on replication capacity, competition and <it>in vitro </it>evolution experiments were performed. Introduction of E40F results in an increase in Zidovudine resistance ranging from nine to fourteen fold depending on the RT background and at the same time confers a decrease in viral replication capacity. The K43E change does not decrease the susceptibility to Zidovudine but increases viral replication capacity, when combined with E40F, demonstrating a compensatory role for this codon change.</p> <p>Conclusion</p> <p>In conclusion, we have identified a novel resistance (E40F) and compensatory (K43E) change in HIV-1 RT. Further research is indicated to analyse the clinical importance of these changes.</p

    Modulation of HIV-1 Gag NC/p1 cleavage efficiency affects protease inhibitor resistance and viral replicative capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the substrate of HIV-1 protease, especially changes in the NC/p1 cleavage site, can directly contribute to protease inhibitor (PI) resistance and also compensate for defects in viral replicative capacity (RC) due to a drug resistant protease. These NC/p1 changes are known to enhance processing of the Gag protein. To investigate the capacity of HIV-1 to modulate Gag cleavage and its consequences for PI resistance and RC, we performed a detailed enzymatic and virological analysis using a set of PI resistant NC/p1 variants (HXB2<sup>431V</sup>, HXB2<sup>436E+437T</sup>, HXB2<sup>437T </sup>and HXB2<sup>437V</sup>).</p> <p>Results</p> <p>Here, we demonstrate that single NC/p1 mutants, which displayed only a slight increase in PI resistance did not show an obvious change in RC. In contrast, the double NC/p1 mutant, which displayed a clear increase in processing efficiency and PI resistance, demonstrated a clear reduction in RC. Cleavage analysis showed that a tridecameric NC/p1 peptide representing the double NC/p1 mutant was cleaved in two specific ways instead of one.</p> <p>The observed decrease in RC for the double NC/p1 mutant (HXB2<sup>436E+437T</sup>) could (partially) be restored by either reversion of the 436E change or by acquisition of additional changes in the NC/p1 cleavage site at codon 435 or 438 as was revealed during <it>in vitro </it>evolution experiments. These changes not only restored RC but also reduced PI resistance levels. Furthermore these changes normalized Gag processing efficiency and obstructed the novel secondary cleavage site observed for the double NC/p1 mutant.</p> <p>Conclusions</p> <p>The results of this study clearly demonstrate that HIV-1 can modulate Gag processing and thereby PI resistance. Distinct increases in Gag cleavage and PI resistance result in a reduced RC that can only be restored by amino acid changes in NC/p1 which reduce Gag processing to an optimal rate.</p

    Response Inhibition and Error Monitoring during a Visual Go/No-Go Task in Inuit Children Exposed to Lead, Polychlorinated Biphenyls, and Methylmercury

    Get PDF
    Background: Lead (Pb) and polychlorinated biphenyls (PCBs) are neurotoxic contaminants that have been related to impairment in response inhibition

    Increasing the use of second-line therapy is a cost-effective approach to prevent the spread of drug-resistant HIV: a mathematical modelling study

    Get PDF
    METHODS: We develop a deterministic mathematical model representing Kampala, Uganda, to predict the prevalence of TDR over a 10-year period. We then compare the impact on TDR and cost-effectiveness of: (1) introduction of pre-therapy genotyping; (2) doubling use of second-line treatment to 80% (50-90%) of patients with confirmed virological failure on first-line ART; and (3) increasing viral load monitoring from yearly to twice yearly. An intervention can be considered cost-effective if it costs less than three times the gross domestic product per capita per quality adjusted life year (QALY) gained, or less than 3420inUganda.RESULTS:TheprevalenceofTDRispredictedtorisefrom6.73420 in Uganda.RESULTS: The prevalence of TDR is predicted to rise from 6.7% (interquartile range [IQR] 6.2-7.2%) in 2014, to 6.8% (IQR 6.1-7.6%), 10.0% (IQR 8.9-11.5%) and 11.1% (IQR 9.7-13.0%) in 2024 if treatment is initiated at a CD4 <350, <500, or immediately, respectively. The absolute number of TDR cases is predicted to decrease 4.4-8.1% when treating earlier compared to treating at CD4 <350 due to the preventative effects of earlier treatment. Most cases of TDR can be averted by increasing second-line treatment (additional 7.1-10.2% reduction), followed by increased viral load monitoring (<2.7%) and pre-therapy genotyping (<1.0%). Only increasing second-line treatment is cost-effective, ranging from 1612 to 2234(IQR2234 (IQR 450-dominated) per QALY gained.CONCLUSIONS: While earlier treatment initiation will result in a predicted increase in the proportion of patients infected with drug-resistant HIV, the absolute numbers of patients infected with drug-resistant HIV is predicted to decrease. Increasing use of second-line treatment to all patients with confirmed failure on first-line therapy is a cost-effective approach to reduce TDR. Improving access to second-line ART is therefore a major priority.INTRODUCTION: Earlier antiretroviral therapy (ART) initiation reduces HIV-1 incidence. This benefit may be offset by increased transmitted drug resistance (TDR), which could limit future HIV treatment options. We analyze the epidemiological impact and cost-effectiveness of strategies to reduce TDR

    Identifying potential survival strategies of HIV-1 through virus-host protein interaction networks

    Get PDF
    Background: The National Institute of Allergy and Infectious Diseases has launched the HIV-1 Human Protein Interaction Database in an effort to catalogue all published interactions between HIV-1 and human proteins. In order to systematically investigate these interactions functionally and dynamically, we have constructed an HIV-1 human protein interaction network. This network was analyzed for important proteins and processes that are specific for the HIV life-cycle. In order to expose viral strategies, network motif analysis was carried out showing reoccurring patterns in virus-host dynamics.Results: Our analyses show that human proteins interacting with HIV form a densely connected and central sub-network within the total human protein interaction network. The evaluation of this sub-network for connectivity and centrality resulted in a set of proteins essential for the HIV life-cycle. Remarkably, we were able to associate proteins involved in RNA polymerase II transcription with hubs and proteasome formation with bottlenecks. Inferred network motifs show significant over-representation of positive and negative feedback patterns between virus and host. Strikingly, such patterns have never been reported in combined virus-host systems.Conclusions: HIV infection results in a reprioritization of cellular processes reflected by an increase in the relative importance of transcriptional machinery and proteasome formation. We conclude that during the evolution of HIV, some patterns of interaction have been selected for resulting in a system where virus proteins preferably interact with central human proteins for direct control and with proteasomal proteins for indirect control over the cellular processes. Finally, the patterns described by network motifs illustrate how virus and host interact with one another

    Treatment-associated polymorphisms in protease are significantly associated with higher viral load and lower CD4 count in newly diagnosed drug-naive HIV-1 infected patients

    Get PDF
    Peer reviewe

    Rare pathogenic variants in WNK3 cause X-linked intellectual disability

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordData availability: All data are available upon request. The sequence variants in WNK3 (NM_004656.3) reported in the paper have been deposited in ClinVar database. Their respective accession numbers (SCV002107163 to SCV002107168) are indicated in Tables 1 and S1.Purpose WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. Method We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). Results We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had identifier with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. Conclusion Pathogenic WNK3 variants cause a rare form of human X-linked identifier with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.Estonian Research CouncilNational Natural Science Foundation of ChinaRoyal SocietySouth Carolina Department of Disabilities and Special Needs (SCDDSN)National Institute of Neurological Disorders and Stroke (NINDS
    corecore